Back to Osmose Work PlanSee on Demos map

WP3 – Grid forming for the synchronisation of large power systems by multi-service hybrid storage

Demo overview

  • Proof of concept of the synchronisation service on a distribution and on a transmission system
  • Multi-service installations
  • Portability across multiple hardware architectures


Partners involved



WP Leader Contact: Guillaume DENIS, RTE


Why grid forming?
Today, inverters are “grid following” : they behave as current sources and follow the voltage waveform of the network. With more inverter-based generation, inverters have to be “grid forming” to ensure the robustness of the system. Specific control algorithms were designed in the H2020 Migrate project but have never been tested on real environments.

Why hybrid storage?
Hybrid storage, like in the RTE/Ingeteam demo, includes supercapacitors and a battery. The supercapacitors provides the very fast power peaks required by grid forming. The battery can sustain longer energy needs, especially for other services than grid forming. This could also be used as a proof for upgrading existing battery to grid forming without additional constraint on the battery .Otherwise, fast batteries (Lithium-Titanate) like in the EPFL demo could be used.

Why multiservices?
To assess the cost of grid forming we need to study how this function synergizes with other traditional services, by sharing common hardware and avoid an oversizing


  • Test the robustness and effectiveness of grid forming control in two real environments
  • Assess multi-services compatibility
  • Define DC power and energy management strategies
  • Test the portability of the control strategies over different hardware platforms

WP status (November 2020)

The first demonstrator at EPFL premises is running from last May until December this year. The PMU installed inside the BESS container successfully enables to assess the impacts on the local frequency when the BESS control is set in Voltage Source Converter (VSC) mode. Experimental tests have been run to assess the evolution of the KPIs, and simulation tests on the 39-bus grid were carried out to assess the BESS response in different grid cases.

As for the second demonstrator at RTE substation, the Factory Acceptance Tests were successfully completed in last July. The full installation has been performed, grid connection included, and the site acceptance tests are close to completion.

Deliverbales for download

  • Deliverable 3.1 – Multi-service control algorithm for converters describes a scheduling and control framework for a battery energy storage system to provide simultaneously multiple services to the electrical grid. Its objective is to maximize the battery exploitation from these services in the presence of uncertainty.
  • Deliverable 3.2 – Overall specifications of the demos presents the technical description of the EPFL and RTE demos and defines Key Performance Indicators for each. It details Migrate control updates required for industrial implementation and simulation results. Different DC control strategies for power and energy sharing between the different DC components are also described and simulated. A modified version of the IEEE 39 bus system modelled in a real time simulation platform is detailed and provides a reliable benchmark with long term testing capabilities.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement n°773406