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0 Executive summary 
 

This deliverable is related to the work performed in the sub-task 7.3.1 “Optimized application-

specific design of BESS” of the OSMOSE project. This task aims to develop methods and 

associated tools to optimize the design of BESS by taking into account both the application 

and the storage performance over its lifetime. 

The document is organized as follows: 

 Section 1 introduces the overall challenge of BESS optimal sizing and describes the 

objectives of the present study. 

 Section 2 focuses on the state of the art on battery optimal sizing, by providing a 

comprehensive review of battery sizing criteria, methods and its applications in various 

renewable energy systems.  

 Section 3 describes the simulation-based analytical method which has been developed 

for BESS optimal sizing in the context of the study. It also defines the scope of the 

sensitivity analysis which has been carried out to identify the most influencing factors 

to consider during a BESS sizing procedure. 

 Section 4 explains how the methodology has been implemented for two different 

illustrative BESS application cases, which were then used for the sensitivity analysis 

purposes. 

 Section 5 details the comparison results obtained for each of the influencing factor 

investigated through the sensitivity study. 

 Finally, the conclusions of the study are given in section 6, which provides a synthesis 

of the different results and explains how to take advantage of them in the design phase 

of BESS projects. 

The simulation-based method for optimal sizing developed within this study and 

implemented on the two illustrative application cases is represented on the following figure. 
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An example of sizing results obtained through this method is illustrated on the next figure, 

where the chosen indicator is the levelized cost of energy (LCOE). On this graphic, minimal 

LCOE value (360€/MWh) is obtained with the battery nominal capacity of 440 kWh, which is 

the BESS optimal size in this case of figure. 

 

 

By using two very different illustrative BESS use cases, the study enabled to: 

- Illustrate how the generic simulation-based methodology developed and implemented 

for the study purposes can be applied to different use cases, for systems composed of 

various energy components and/or different energy application purposes, 

 

- Distinguish, among the influencing factors investigated through sensitivity analysis, 

those whose impact has the same magnitude regardless to the application from those 

whose impact is application-dependent. 

 

The conclusions of the sensitivity analysis for each of the investigated factors are summarized 

in the following table: 

Factor Conclusions 

Precision of 

the BESS 

efficiency 

behaviour 

A variable efficiency behaviour can be approximated by an average 

efficiency single value without any impact on optimal sizing. 

However, the average efficiency value must be set precisely since 

the sizing indicator value is strongly affected by this parameter. An error 

on BESS efficiency value causes an error bordering on the same 

magnitude on the sizing indicator. 

Degradation of 

battery 

capacity due to 

ageing 

Ageing must be taken into account in optimal sizing. 

In case of limited availability to precise ageing parameters, an estimation 

of average degradation is sufficient to obtain appropriate confidence 

levels on sizing indicators. 
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Factor Conclusions 

Degree of 

technical 

modelling of 

the BESS 

component 

Optimal sizing does not require a high degree of technical 

modelling: a simplified model of BESS directly handling power and 

energy quantities from global efficiency parameters is adapted and leads 

to the same sizing indicator values, within a one percent interval, as an 

in-depth performances model based on equivalent-circuit equations. 

Simulation 

time-step 

The influence of the simulation time-step on optimal sizing strongly 

depends on the application time constants related to the events 

impacting the operation costs or incomes. 

An hourly time-step should in general not be recommended as it could 

lead to an important loss of information about these events. 

When such events are related to PV fluctuation or fuel generator 

operation, like on the 2 illustrative cases, a time-step of 10mn seems 

suitable. 

Degree of 

complexity of 

control 

algorithms 

Strong impact: different control strategies may lead to a different optimal 

BESS size, as illustrated with the hybrid microgrid application.  

It is therefore recommended to clearly define the control strategy before 

determining the optimal size. 

Forecast 

quality when 

predictive 

control is 

facing forecast 

errors 

Highly depends on the application purpose: if the main function of 

BESS is to compensate for forecasting errors in the RE sources, as for 

illustrative application #1, forecast quality is of the highest importance for 

optimal sizing: a 50% improvement of the forecast quality induced a 

difference of 15% of the sizing indicator value for application #1. 

 

At the stage of modelling or collecting data for optimal sizing purpose, these conclusions 

should help to: 

- Concentrate the effort on the crucial factors which have the strongest influence on the 

optimal size determination. 

- Identify where relevant approximations can be applied in the calculation to save some 

unnecessary efforts and computation time without degrading the accuracy of the result. 
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1 Introduction and objectives 
 

Due to the number and variety of services they can provide, energy storage is likely to play a 

significant role in the optimal mix of flexibility solutions for the European power system.  

Of the various type of ESS technology available, battery energy storage systems (BESS) have 

attracted considerable attention with clear advantages like fast response, controllability, and 

geographical independence [1, 2]. Besides the advantages mentioned, BESS also have a wide 

scope of applications ranging from short-time power quality enhancement to long-term energy 

management, as well as reliability enhancement, uninterrupted power supply and transmission 

upgrade deferral. 

BESS can consequently deliver multiple benefits that will enhance grid performance, 

operability and security together with reducing energy production and delivery costs. The many 

functions of this powerful tool include its ability to: 

 Offset additional need for peak generating capacity, 

 Enhance optimal operation of existing generation facilities, 

 Integrate intermittent renewable energy technologies, 

 Provide ancillary services such as load following, area regulation and spinning reserve, 

 Reduce transmission congestion, 

 Defer transmission and distribution upgrades and provide an alternative to inflexible 

lumpy transmission and distribution capacity additions, 

 Support and enhance demand response resources. 

BESS thus mitigate some of the current and future challenges that grid operators face to 

improve the overall economics of the infrastructure while reducing the overall carbon footprint 

and providing reliable services. Specifically, the challenges include managing peak demand, 

resolving transmission line congestion, and integrating renewable energy technology in a 

climate of financial risk adversity that will limit new transmission construction. 

Over the last decades, significant research and development has been conducted to improve 

cost and reliability of battery energy storage systems. Although certain battery storage 

technologies may be mature and reliable from a technological perspective [2], with further cost 

reductions expected [3], the economic concern of battery systems is still a major barrier to be 

overcome before BESS can be fully utilised as a mainstream storage solution in the energy 

sector. The investment costs for deploying a BESS can be significant. That is the reason why, 

during the implementation of battery energy storage systems, one of the most crucial issues is 

to optimally determine the size of the battery to define the appropriate balance between the 

technical improvements brought by the battery and the additional overall cost. 

In other words, the trade-off between using BESS to improve energy system performance and 

to achieve profitable investment is a critical decision to make for project developers. In this 

regard, the optimisation of BESS sizing is a vital issue to balance this trade-off, by attaining 

the best solution for multiple, or even contradictive, requirements. 
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Determining the optimal BESS size for a specific application is a complex task because it 

directly or indirectly depends on a lot of factors, parameters and uncertainties such as: 

- Application control strategy, which will determines how the storage system will be used 

for the considered application, 

- Energy and power application needs over the project lifetime, 

- Application technical constraints, such as AC transmission or distribution grid 

requirements in terms of OVRT, availability and/or redundancy requirements, 

- Battery technologies and characteristics, such as efficiency, 

- Degradation of the performances of the battery over its lifetime (capacity and/or power 

degradation due to battery ageing), 

- Uncertainties related to renewable energy sources / forecast errors / load demands /  

energy prices, 

- Realistic economical assessments to correctly evaluate investment as well as 

operation costs throughout the project lifetime. 

This report describes a generic method which has been developed to determine the optimal 

size of a BESS involved in a specific power application. In order to provide a better 

understanding of the influence of the different factors listed above, this method has been used 

to carry out several sensitivity analyses aiming at assessing their degree of impact on the 

BESS optimal size determination. 

By highlighting the main factors which have the most significant impact on the optimal sizing 

results, the goal is to provide useful information for real projects specification phase, enabling 

to distinguish crucial factors which have the strongest influence on the BESS sizing from those 

having a minimal impact and which can be neglected or approximated if their exact knowledge 

is not available at the time of the design stage.  
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2 General approach for BESS sizing 
 

2.1 BESS sizing criteria 
 

There are a range of performance indicators for determining the size of BESS, which can be 

used either individually or combined to optimise the system. BESS sizing criteria can be divided 

into three classifications: financial, technical and hybrid criteria [4]. 

2.1.1 Financial indicators 
 

One key driver for determining the size of a BESS is the financial return for the operation of 

the system. A key attraction of financial indicators is that there is a common unit for making 

decisions, namely the local currency, enabling the comparison of different alternatives. Even 

with the benefit of a common unit for comparison, there are several different indicators that 

can be used as optimisable parameters for designs. Many studies have looked at the overall 

costs and benefits of the battery system in RES over the operational lifetime of the system. 

These approaches used the time value of money, via a discount rate, to determine overall 

costs on a lifetime basis, including levelised upfront capital costs, annual/daily operation and 

maintenance (O&M) costs, as well as fuel costs if the corresponding generators were applied. 

The indicator to be optimised can then be the Net Present Value (NPV) of the system [5], which 

should be maximised, or the levelised cost of electricity (LCOE) on an annual basis [6] or daily 

basis [7, 8], which should be minimised. The NPV in [5] was formulated as the difference of 

levelised daily operation costs with and without ESS, whereas the LCOE in [6] took the 

annualised investment cost, annual operation cost and fuel cost into account directly. During 

the formulation, the modelling of a BESS's cost is a key issue. Therefore, it is worthwhile to 

mention the study of [9], where a detailed explanation of the methodology for calculating and 

analysing a BESS's total cost and annualised life cycle cost (LCC) can be found. However, the 

modelling of BESS costs in most studies associated with BESS sizing used neither the total 

cost nor LCC. They generally included the capital cost of BESS, which was then converted 

into an annual/daily cost by taking into account the interest rate [10], and the annual/daily O&M 

cost of BESS. The replacement cost of BESS was included in the formulations in [5] and [6], 

but the disposal and recycling costs of BESS were rarely considered. 

Another financial indicator approach is to look at maximising the market benefit of the 

inclusion of a battery system in a RES. One significant case is microgrids, where the total 

benefits in grid-connected mode are maximised and the total costs associated with being in is-

landed mode are minimised [11, 12]. The total costs of microgrids include the levelised 

operating costs from BESS and other running components, whereas the total benefits were 

calculated through the difference between the benefits from selling electricity and the total 

operating costs. More details about these formulations can be found in [11, 12]. Other 

examples looked at partial financial values, rather than the total costs/benefits, for instance, 

maximising the difference between the sale of electricity to the grid and purchase from the grid 

for a grid-connected system [13].  
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2.1.2 Technical indicators 
 

As opposed to financial indicators, technical indicators do not have a common unit and so 

direct comparisons in different cases with a number of technical criteria can be difficult. 

Consequently, popular ways to integrate the technical indicators is to achieve a single 

optimisation goal or to include them as constraints during the sizing process. In the 

optimisation, technical indicators can be quantified by binary variables, i.e. do they meet (or 

not meet) the requirements, or as a specific value goal, such as renewable curtailment and 

forecast errors which can be minimised. When considering technical indicators for battery 

inclusion in renewable systems, it is worth noting that they all serve to quantify the support of 

the BESS for the dynamic or steady state characteristics of the RES. 

To improve the dynamic characteristics (with time horizons less than 1 min), two main technical 

criteria for both autonomous systems and grid-connected systems are frequency regulation 

and voltage stability. Both of these indicators can be regarded as binary variables, in other 

words, to dispatch the battery to meet the frequency and voltage requirements.  

Other than dynamic enhancements, a number of criteria concerning steady-state operation 

(with time horizons greater than 1 min) are also actively applied for BESS sizing, such as 

reliability [14] and renewable energy curtailment [15]. Curtailment is defined as a deliberate 

decrease in renewable energy power output to avoid overgeneration, transmission 

congestions or the risk of instability in the grid. Renewable energy curtailment can be readily 

quantified as a dumped power profile, i.e. the difference between the dispatched power and 

the potentially produced power given available resources (wind and sunlight) [16], or 

accumulated dumped energy, which can be quantified as kWh by integrating the dumped 

power with respect to time. Thus, curtailment has been adopted as a technical indicator for 

BESS sizing. Another important technical aspect of dispatching a battery is to improve the 

features of the power profiles such as peak shaving, constant power output and smoothing of 

variability. An example of using peak shaving as a sizing indicator is to determine the capacity 

by regulating the ESS to achieve the daily mean wind power equals to the daily mean load 

[17]. Another extreme example is to size the battery by delivering a constant power generation 

for a wind farm [18]. Furthermore, the variability of renewable energy can be smoothed by 

dispatching the ESS as a low-pass filter, therefore, the size of the ESS can be determined 

through the behaviours of the ESS [19, 20]. Indicators related to reliability are more commonly 

adopted for standalone RES, or microgrids operating in islanded mode, to replace limited or 

expensive backup options. An example of considering reliability in a microgrid is to use the 

Loss of Load Expectation (LOLE) as the assessment, defined as the expected fraction of 

unserved load in the microgrid during the simulation period, and 0.1 days/year was defined as 

the target for the reliability of power supply [21]. Another important approach for determining 

battery size is to consider the BESS operating to compensate for forecasting errors in the RE 

sources [22, 23]. This is an important application, especially when the renewable generators 

are registered to participate in the electricity market dispatch, since excess generation would 

be required. Therefore, using battery systems to compensate for forecasting errors can 

improve the utilisation of renewable energy and avoid any potential penalties for non-delivery 

of bid power/energy. It is worthwhile mentioning that battery cycle life and operational 
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parameters such as Depth of Discharge (DOD), and charge/discharge rates can also be 

regarded as significant indicators for battery size determination, more often serving as a 

constraint during the sizing process. There are many ways to evaluate the degradation of 

BESS. Dragicevic et al. [24] counted the number of cycles over the time horizon for the 

assessment of battery degradation. Alternatively, State of Health (SOH) can be used to identify 

the degradation degree of the battery [25], accounting for the ageing from cycling as well as 

the calendrical ageing [26]. The key battery system parameters and cycle life are technology 

dependent and system characteristics need to be considered when adopting BESS. 

2.1.3 Hybrid indicators 
 

In more recent studies there has been a growing emphasis on considering both financial and 

technical indicators simultaneously with regards to battery sizing. There have been two major 

approaches to combine these indicators; the first of these has been mentioned previously, 

where technical indicators act as constraints within which the financial indicators need 

to be optimised. A good example of this type of approach was given by Bahramirad et al. [21], 

where the size of the ESS was determined by minimising the investment and operating cost 

under the restriction of guaranteed reliability. The other major approach is multi-objective 

optimisation for hybrid indicators that consist of both financial and technical metrics. A good 

example of this type of approach is outlined by Korpaas et al. [27], where the exchange power 

was smoothed whilst maximising the benefits of the wind farm. We can also imagine a mix 

between financial performance and environmental indicators, such as minimizing CO2 

emissions due to application operation, or to the manufacturing and recycling processes of the 

chosen battery technology. 

In summary, it can be seen that there are a number of criteria that may be selected to allow 

the determination of BESS size from either a technical or financial perspective. It should also 

be noted that the critical functions of BESS change with different criteria being used in size 

determination. A specific example of this is when technical indicators are selected to improve 

the dynamic characteristics of an energy system, the power capacity of a BESS plays a far 

more critical role than the total energy capacity. In other words, how rapidly the BESS can 

deliver power is more important than the overall energy it can deliver. This aspect has 

manifested itself in studies such as Nazaripouya et al. [28], where battery sizing was found in 

terms of per unit multiplied voltage regulation duration and for the case of frequency regulation 

[29]. Generally speaking, the energy and power capacities are both equally important, 

particularly when looking at multiple technical indicators, but as highlighted by these cases 

there are specific functions of a BESS where this ceases to be the case. A further way to make 

the energy capacity (and by extension the physical size of the BESS) a less critical component 

is the use of advanced dispatch strategies to achieve multiple functions, allowing an 

existing BESS to be used more effectively and for system design to more effectively use the 

energy and power capacity of a BESS. 

2.2 BESS sizing methods 
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The sizing of battery storage systems can be determined using a wide variety of techniques, 

with each approach having its own strengths and weaknesses [4]. The complexity of the 

techniques employed also varies considerably, with approaches spanning simple probabilistic 

techniques through to mathematical optimisation strategies and nature inspired methods. The 

focus in this section is on the most common techniques encountered in the literature. The 

techniques described and discussed are: probabilistic methods, analytical methods, directed 

search-based methods and hybrid methods. 

 

2.2.1 Probabilistic methods 
 

Probabilistic methods are perhaps the most intuitively appealing and simplest approaches to 

battery sizing. A flowchart explaining probabilistic methods can be found in Figure 1. The key 

concept is to use the stochastic nature of the renewable resources, typically solar or wind, to 

optimise the battery size for the selected criteria.  

 

Figure 1: Flowchart of probabilistic methods 

Probabilistic methods have the advantage that the need for a large amount of resource data is 

lessened, making them useful for situations with limited data availability. One key drawback is 

that the number of performance criteria being optimised in these approaches tends to be small 
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(often only one or two), which makes their applicability for detailed designs limited. A typical 

approach is to construct models of the generation capability of the RE power system in 

question and combine them with a load model in order to create a risk model of the power 

system. Performance criteria can then be optimised against this risk model. One straight-

forward approach based around this process is to use statistical methods to generate 

simulated samples as in Wu et al., where a mixed distribution based on Laplace and normal 

distributions was used to model forecast errors of a single wind farm over multiple timescales 

[30]. Global Horizontal Irradiance (GHI) data of solar irradiance have also been generated 

through a Markov-chain approach for battery size determination, as detailed in [25]. 

Besides implementing probabilistic methods for data generation, stochastic optimisation 

methods have also been deployed in many studies. The most popular of these is the Monte 

Carlo approach, in which a large number of scenarios (samples) are generated according to 

the statistical behaviour of random variables. By surveying the outcomes from a large number 

of scenarios generated, the optimum configuration can be deduced. By its very nature, Monte 

Carlo simulation usually entails considerable computation, but it does offer a comprehensive 

strategy for making a design decision. Monte Carlo approach has also been used for the dual 

objectives of demand shift and outage protection in building integrated PV systems considering 

uncertain building load, weather information and local historical outage distribution [31]. Other 

applications of Monte Carlo approach for battery storage includes minimising the power 

imbalances from inaccurate wind forecasting considering the uncertainty from forecasting [32], 

and frequency control with regards to statistical data of wind speed, solar irradiance and load 

[33]. Apart from the Monte Carlo approach, chance-constrained optimisation [34], robust 

optimisation [24] and stochastic control strategy [35] have also been employed to determine 

the size of the battery system taking into account uncertain random variables. 

 

2.2.2 Analytical methods 
 

Analytical methods, sometimes referred to as deterministic methods, are amongst the most 

broadly used methodologies for BESS size determination. These methods are based around 

analysing a series of power system configurations with the system elements varied being those 

that need to be optimised against performance criteria. A flow-chart explaining analytical 

methods can be found in Figure 2.  
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Figure 2: Flowchart of analytical methods 

Analytical methods can be very straight-forward, such as when sizing for absorbing spilled 

wind energy, the battery's power and energy capacity can be derived directly from its daily 

spilled wind power profile [36]. Another simple example includes battery sizing for a constant 

windfarm output [18]. However, analytical methods are typically implemented by repetitive 

calculations or simulations performed over fixed intervals for the relevant system elements 

(usually the varying power and energy capacity). Using this approach, where performance for 

varying sizes of the battery storage against the corresponding performance criteria (financial 

or technical metrics) are found, a selection for battery sizing can be made. Another similar 

example is to conduct a sensitivity analysis to observe the impact of different battery sizes over 

performance criteria (financial or technical metrics), such as the battery sizes over the payback 

periods in [37]. The detailed implementation of specific strategies in different studies varies 

considerably in terms of the underlying system models. These can be based on numerical 

models, where the relationship between battery capacities and the assessed criteria can be 

directly formulated by equations. Dynamic models, where relationships are typically 

represented by differential equations requiring sophisticated numerical techniques to solve, 

are also included. Professional software is often used for the simulations of dynamic cases. A 

good illustrative example of applying analytical methods through a numerical model is given in 

Rodrigues et al. [15], in which several simulations with varying battery capacities were 

performed, analysing the annualised cost of corresponding storage systems and wind power 

curtailment. Using these techno-economic indicators, the size of the battery system can be 

chosen. Other examples include Aghamohammadi et al., in which a number of dynamic 

simulations were performed with decreasing the allowable overloading coefficients for primary 
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frequency control, until the BESS is able to capture the frequency mismatch, a condition 

indicating an optimum battery size [29]. Whilst the use of analytical methods is very effective 

in many cases, a key concern is the need for a large number of simulations with combinations 

of single/multiple techno-economic performance indices. This inevitably leads to a trade-off in 

the resolution of the solution, since, while it is obvious that smaller intervals would lead to more 

accurate results, the quantity of computations will generally increase at an exponential rate. 

This becomes problematic when limited computational resources are available, and can, in 

extreme cases, make the calculation of the full solution space untenable. From this point of 

view, improvements in high performance computing to improve the efficiency of large quantity 

computational simulations may allow for the use of analytical methods at higher resolutions 

[38, 39]. 

2.2.3 Direct search-based methods 
 

An obvious refinement to analytical methods is to reduce the need for simulations across the 

entire configurational space of the system being analysed to reach the optimum solution in a 

computationally efficient manner. There is a vast array of techniques developed for such 

optimisation problems, with many of them being used for BESS sizing. These can be 

conveniently split into mathematical optimisation techniques, based on mathematical 

properties of the solution space, and heuristic techniques, where tailored search parameters 

can be used to deliver an efficient algorithm, often based around nature inspired selection 

methods. A flowchart demonstrating direct search-based methods can be found in Figure 3. 

 

Figure 3: Flowchart of direct search-based method 
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2.2.3.1 Mathematical optimisation based methods 

 

From the perspective of mathematical optimisation theory, BESS sizing optimisations may be 

expressed as linear programming, mixed-integer programming or even non-linear 

programming problems. Performance of BESS using these methods consists of constructing 

an objective function, which can be assessed by an iterative process that stops when the best 

result is reached. Optimisation problems can also be solved using classic numerical methods 

such as interior point algorithm, gradient descending algorithm, or Newton's method. These 

methods can find the solution in a limited number of steps, reducing computational load 

considerably. Moreover, due to the relatively mature nature of these methods, professional 

software is available for solving optimisation problems, such as MATLAB optimisation toolbox 

and General Algebraic Modelling System (GAMS) amongst others. For example, the study 

performed by Bahramira et al. was an application using IBM ILOG CPLEX Optimisation Studio 

(CPLEX) to optimise the size of an ESS which was formulated as a mixed-integer programming 

problem [21]. One significant case of using recursive techniques is dynamic programming 

(DP), which can solve optimisation problems through the construction of solution sets from the 

solutions of smaller sub-problems. DP has been applied in many studies for a spectrum of 

targets, including to minimise daily total cost [7] and to maximise expected daily operating 

profits [27]. It must be stressed, however, that while the application of these mathematical 

optimisation techniques can vastly improve computational efficiency, when the formulation 

becomes more complex, especially for non-linear programming problems, these tools face 

difficulties in converging to an optimum solution. This issue of robustness has led to the 

widespread use of heuristic-based solution methods as detailed below. 

2.2.3.2 Heuristic methods 

 

Heuristic methods allow non-optimal or not perfect (usually near optimum) solutions, 

which are sufficient for practical purposes. The distinct advantages of heuristic methods are 

that they can avoid complicated derivatives, especially for non-linear optimisation problems, 

thereby using reasonable memory and computation time [40, 41]. Despite often having no 

mathematically proven basis for obtaining optimal solutions, heuristic approaches such as 

nature-inspired algorithms like Genetic Algorithms (GA), Particle Swarm Optimisation 

(PSO), and Tabu searches, etc., tend to offer fast convergence, simple implementation and 

strong flexibility. In fact, there are many previous studies solving BESS size determination 

problems by using nature-inspired algorithms. For battery sizing problems, PSO has been 

proven to be a popular algorithm to solve for minimising the cost of energy not supplied and 

ESS costs (mixed-integer nonlinear programming) [42] and to minimise the levelised cost of 

electricity [43]. Other heuristic algorithms such as genetic algorithm based methods [10], Tabu 

search [44] and bat algorithms (BA) [8] that are nature inspired evolutionary techniques are 

also actively applied for battery size determination. 
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2.2.4 Hybrid methods 
 

The sizing techniques outlined above each have their own specific advantages for the BESS 

sizing process, along with weaknesses. For example, while analytical methods usually return 

more accurate results, a poorly selected optimisation interval may miss the exact solution, or 

a high resolution may increase the computation burden significantly. Also, search-based 

methods may not guarantee an optimal result due to the possibility there is a convergence to 

a local optimum, rather than to the global optimum. Moreover, when using probabilistic 

methods, a large quantity of scenarios are generated, which may place a heavy burden on 

computational capability. It stands to reason that if the advantages of different methods can be 

combined to enhance the effectiveness and efficiency of the optimisation procedure, whilst 

simultaneously removing inherent weaknesses, these so-called hybrid methods should deliver 

both robust procedures and the ability to ensure the global optimum being guaranteed with the 

required resolution. The hybridisation of different methods can occur in either a de-coupled or 

coupled way, where de-coupled indicates that two optimisation methods are mutually exclusive 

processes, whereas coupled suggests two methods working together concomitantly. An 

example of a decoupled application of hybrid methods is given in Cervone et al. [25], where 

both a probabilistic method and an analytical method were used to determine the BESS size 

for a grid-scale PV plant in separate steps. A discrete-time Markov Chains approach was first 

implemented to generate a 20-year time series of irradiance, then an economic analysis of 

various energy storage systems was used to reduce the imbalance costs associated with 

renewable energy integration, thereby obtaining the optimal size of the battery system [25]. 

This approach is in contrast to the coupling of probabilistic and search-based methods via 

robust mixed-integer linear programming that Dragicevic et al. implemented for minimising the 

overall investment cost considering the uncertainty of PV, wind energy and demand [24]. 

Another example of coupled hybrid methods was the use of a chance-constrained stochastic 

optimisation model, where a Monte Carlo embedded Differential Evolution (DE) algorithm was 

applied as a solver to maximise wind power utilisation and minimise the investment and 

operation costs as reported by Zhang et al. [34]. In summary, there has been a wide range of 

approaches implemented when solving the problem of battery sizing. In Table 1, the 

advantages and disadvantages of sizing techniques mentioned are summarised. The tailored 

simulation cases in each study can make it difficult to compare the effectiveness of each of the 

different methods, but there are some studies comparing between techniques. For example, 

both analytical and search-based methods were performed to minimise the battery power for 

load shedding in Kerdphol et al. [45]. Their results showed that the optimal battery power 

capacity based on search-based methods showed better frequency and voltage performance 

than the capacity found using analytical methods. However, it must be cautioned that this is 

one case, and it does not mean that search-based methods should be regarded as superior to 

analytical methods for all purposes. Overall, BESS size determination in RES can be seen to 

be a multi-faceted problem, involving single/multiple-objective optimisation, decision-making 

and multiple systems simulation. It should also be noted that more advanced solution 

techniques are being continually developed with these potential new hybrid methods 

combining advantages from different optimisation approaches. 

 



Deliverable D7.5: Methodology report for application-specific design of BESS 

 
 

Page: 22 / 75 
  

Table 1: Summary of the pros and cons of BESS sizing methods 

Method Pros Cons 

Probabilistic 

 Generates synthetic weather resources and PV/wind 
power generation data 

 Generates synthetic scenarios for stochastic 
optimisation 

 Overcomes the restriction of limited data 
availability 

 Gives results with confidence levels 

 Accuracy relies on the availability of historical 
data 

 May require computational extensive 
resources 

Analytical 

 Direct calculation based on intuitive criteria 

 Repeated computation/simulation with fixed intervals 

 Sensitivity analysis 

 Better visualization with the change of battery 
sizes 

 Strong flexibility for all criteria and simulation 
environments 

 Computational intensive 

 May miss global optimum if the data 
resolution is not high enough 

 Requires large amount of representative input 
data 

Mathematical optimisation 

 Linear, mixed-integer, quadratic programming 
problems 

 Problems that can be linearized 

 Problems that can be solved by numerical methods 

 Strong capability to find the global optimum 

 Fast convergence and high robustness for linear 
problems 

 High efficiency limited to linear/mixed-
integer/quadratic programming problems 

 Linearization may require extra derivations 

 Explicit mathematical formulation required 

Heuristic 

 Non-linear optimisation problems 

 Apply nature-inspired algorithms such as GA, PSO, 
Tabu search and Bat Algorithms 

 Strong flexibility to solve all optimisation 
problems 

 Avoid complicated derivatives 

 Use less computational resources 

 Simple implementation 

 Large assortment of algorithms 

 May converge in local optimum instead of 
global optimum 

 Less robustness and accuracy for linear 
problems 

Hybrid 

 Decoupled methods combined sequentially 

 Hybridisation of different methods in a coupled way 

 Combines strengths of different methods 

 Improves robustness and ensures global 
optimum found 

 Likely to increase the complexity 

 May require high computational resources 
than heuristic methods 
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3 An analytical method implemented for sensitivity 
study purposes 

 

One of the major objectives of this study is to provide to project investors and designers useful 

synthetic information on the most influencing factors to consider during the BESS sizing 

procedure. For this purpose, some sensitivity analyses need to be performed to assess how 

the value of BESS sizing criteria (financial and/or technical metrics) may be affected by a 

change of influencing parameter, potentially leading to a different optimal size determination.  

To conduct this survey, an analytical method has been implemented, based on numerical 

simulation. Although this type of deterministic technique involves significant computational 

resources to repeat simulations with different combinations of BESS sizes and influencing 

factors parameters; it provides the necessary flexibility for all criteria and parameter settings 

required by the sensitivity analysis. Due to deterministic calculation on user-specified intervals, 

it also enables a better control and visualization of the impact of the factors variation, as 

already mentioned in section 2.2 and Table 1. 

3.1 General description of the deterministic simulation-based method 
 

The method implemented for BESS optimal sizing relies on a numerical simulation platform 

called SPIDER (Simulation Platform for the Integration of Distributed Energy Resources), 

which has been developed at CEA in a Matlab / Simulink environment. 

The main advantages of using this simulation tool both to carry out some techno-economic 

assessments as required by the BESS optimal size determination and to perform a sensitivity 

analysis are listed below: 

- The Simulink graphic-modelling environment enables to reproduce the functional 

architecture of the study cases by hierarchical blocks and diagrams and to interface 

the energy system components models with the control algorithms. 

 

- This platform environment offers a high-level of modularity, enabling to run some 

similar operation scenarios with different control algorithms and/or different 

degrees of technical modelling for a same energy component, just by switching the 

corresponding block model in the Simulink use-case diagram.  For the present study, 

this modularity enables to carry out some sensitivity analyses on the type of the battery 

model used for the calculation of its optimal size. Thus, the optimal sizing results 

obtained with an in-depth performances battery model based on equivalent-circuit 

equations will be compared with those obtained through a simplified modelling of the 

energy/power behaviour of the battery. The influence of the control strategy on optimal 

sizing will also be assessed through the comparison of battery size determination when 

a basic or more advanced level of control is integrated into the energy management 

algorithms.       
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- The SPIDER platform benefits from an already existing library of energy component 

models (PV plants, wind turbines, energy storage systems, battery cells, converters,  

fuel generators,…)  and control algorithm templates developed by CEA. By reusing 

these generic modules, the study can more intensely focus on the specific issues 

related to optimal sizing and on the comprehensive sets of configurations / parameters 

to be implemented for the sensitivity analysis purposes.  

 

- The SPIDER platform provides a generic structure and a ready-to-use set of 

templates, functions and tools for configuring simulations, launching some sensitivity 

analysis scenarios and customizing post-processing calculations, as well as 

instantiating the models with some specific set of parameters of the case study. 

 

- The ability to run simulations at different time steps, specified by the user as a 

configuration parameter. The sensitivity study will take advantage of this flexibility to 

also analyse the influence of the simulation time-step on the optimal sizing results. The 

repetition of similar operation simulations with different time-step values (typically 1mn, 

10mn and 1 hour) should indeed provide a better understanding of the impacts of 

intermittency and limited predictability of renewable energy sources on the optimal 

sizing results. This analysis axis could also help to find a convenient trade-off between 

required computational time and accuracy of the result. 

 

The general synoptic implemented for the calculation of the optimal sizing criteria of a given 

configuration (i.e. one particular size of BESS) is depicted on Figure 4. By repeating this 

procedure for different BESS configuration sizes, it becomes possible to identify which 

configuration size leads to the best value of the performance indicator, determining thus the 

optimal size. 

In practice, the optimal sizing tool developed into the SPIDER platform enables to define a 

range of BESS size values for launching the automatic processing of the defined sizing 

indicators on the entire search area. At the end of this processing, an overview graphic is 

produced to visualize the variation of the sizing criteria along with the BESS size (as illustrated 

on Figure 5), as well as synthetic tables containing all values of intermediate and final 

indicators for each of the simulated configurations. 
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Figure 4: Overview of the deterministic method used for BESS optimal sizing 

 

 

Figure 5: Example of results where optimal sizing criteria used is LCOE  

On this figure, minimal LCOE value (360€/MWh) is obtained with the battery nominal capacity 
of 440 kWh, which is the BESS optimal size in this case. 
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3.1.1 Data set required for simulation 
 

As shown on Figure 4, 2 types of data set are required to launch the simulation process: input 

data time series and model parameters. The following sections give a brief description of each 

of them. 

3.1.1.1 Input data time series 

 

This type of dataset is used to simulate the conditions where the system has to operate in 

terms of external constraints. For energy applications involving some renewable sources, 

these data are typically composed of information enabling to determine the renewable energy 

source potential as well as the eventual load demand constraints. As these constraints (energy 

generation potential and/or load demand profile) have of course a direct impact on the required 

BESS size, accurate estimations or even better real historical measurements specific to the 

real installation and location must be used.  

For the 2 illustrative application cases developed in next sections and used for sensitivity 

analysis, the need for input data time series was as follows: 

- PV power output: the PV power output can be computed from data of different nature, 

like solar radiation and temperature from the site location, and then processed 

according to the PV plant characteristics (solar panels azimuth, tilt angle and 

specifications). However, it may be more convenient to directly use the power 

production (DC or AC) of one module or several modules if it has been measured or 

computed by another tool. For the present study simulations, a full-year measurement 

(1mn resolution) from a PV plant located in Corsica island has been used. Once 

normalized for 1 kWc of PV installed capacity, it could then be scaled to the application 

specific configuration and imported as time series input. To take into account the 

degradation of PV performance over time in simulations of several years, an annual PV 

degradation rate is applied (a median degradation rate for PV modules of 0.5% per 

year is commonly admitted). 

 

- PV production forecast: some PV production forecasts related to the PV output power 

mentioned above were necessary for one of the applications and for the enhanced 

predictive control algorithms used in the sensitivity study. As real historical forecasts 

may be difficult to obtain, they are often subject to rough estimates. Most basic 

approaches consists of exploiting the PV power output historical data either to build a 

“perfect forecast”, i.e. by considering that the PV forecast for day D+1 is exactly the 

PV production that will occur on day D+1, or a “24h persistence forecast”, assuming 

that the PV forecast for day D+1 is the production realized on day D. It is also possible 

to use more complex probabilistic methods to define some stochastic PV forecast 

time series computed from the PV real production data. In any cases, the subject here 

is related to forecast errors, and it raises the question of their degree of impact on BESS 

optimal sizing.  
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The time-series used for PV production forecast in this study correspond to real 

historical PV forecasts related to the PV production of the Corsica solar plant, based 

on meteorological prediction. As they are available for several time horizons (from day 

D-3 to day D-1), the study benefits from realistic forecasts of different quality, which 

can be used to assess the influence of forecast errors on the optimal BESS size 

determination. 

 

- Load power profile: for the second application case illustrated in this methodological 

study and detailed hereafter (section 4.2), the electricity demand power profile of an 

industrial load is needed. As for PV production, the most realistic profile is obtained by 

collecting some historical power measurements of the real equipment. In our 

application case, the industrial load has a weekly consumption profile, repeating from 

one week to the next with some slight deviations. As no full-year measurement was 

available, some full-week measurement samples were extracted from the available 

historical data and randomly duplicated to form a one-year realistic profile. 

 

3.1.1.2 Model parameters 

 

The model parameters correspond to the dataset which is used to define the behaviour of the 

component models. For a given component, the nature of the model parameters strongly 

depends of the type of model used, whereas their values depends of the specific technology 

or specific equipment for which the simulation has to reproduce the operation.  

For the study key component which is the battery system, a widely used battery Li-ion 

technology had been modelled and associated with a DC/AC converter component model. The 

battery system size metrics, which need to be incremented during the optimal sizing 

determination process for associating performance values to each BESS size of the selected 

range, are defined through the model parameters. A given BESS size corresponds to the 

kWh/kW combination of an energy nominal capacity (in kWh) and a rated power (in kW). The 

energy nominal capacity can be changed by the parameters setting the numbers of Li-ion 

battery modules in series/parallel put together (within the constraint of compliance of the 

resulting battery DC voltage to the converter voltage input range), whereas the rated power 

depends both on the battery architecture assembly (series/parallel) and the DC/AC converter 

nominal, which is chosen accordingly to the application technical constraints. 

As introduced in section 3.1, two different approaches for modelling the Li-ion battery 

technology, internally developed at CEA, will be compared in the BESS optimal sizing exercise, 

leading to parameters of different nature for the BESS model:  

- For in-depth performances battery modelling based on electrical equivalent-circuit 

equations, denoted as EC_model through the present document, the battery 

electrochemical behaviour is reproduced from a large set of electrical values 

parameters, consisting of several data tables of battery open circuit voltage and 

resistance values, characterized in laboratory under various conditions of current, 

temperature, state-of-charge or state-of-health. The EC_model used in this study also 
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integrates a SOH computation module, able to estimate the battery capacity 

degradation at each simulation time-step from ageing lab-extracted parameters 

(cycling and calendar ageing) specific to the chemistry of the battery cell selected for 

the simulation. 

  

- For simplified modelling of the energy/power behaviour of the battery, denoted as 

E/P_model through the present document, the model parameters basically consist in a 

correspondence table which directly gives the BESS energy efficiency as a function of 

the AC power setpoint applied to the storage system. In contrast with the EC_model, 

the E/P_model used in this study does not compute any SOH estimations. No ageing 

model parameters are therefore specified for the simulations with the BESS 

E/P_model. 

 

Among the factors which will be investigated through the sensitivity analysis to assess their 

impact on the BESS optimal sizing, some of the them are directly related to model parameters, 

such as BESS efficiency or capacity degradation over time due to battery ageing. For those, 

the sensitivity study will therefore consist in repeating similar simulation scenarios with different 

parameters datasets to observe their influence on the optimal size computation and address 

the following questions: 

- BESS efficiency parameters influence: What is the difference observed between the 

use of a precise variable efficiency dataset (efficiency varying according to 

temperature, SOC and applied power) and the use of a constant mean efficiency value? 

How the optimal sizing result is affected by an approximation of the BESS efficiency 

profile? 

  

- BESS ageing parameters influence: What is the impact on optimal sizing of taking 

into account the battery performances degradation over time? In case of limited 

availability of accurate battery ageing data, could it be a correct workaround to perform 

the simulations over the project lifetime with a constant but moderately degraded 

battery capacity?  

3.1.2 Simulation processing 
 

Once data input time series have been imported and model parameters instantiated within the 

platform, the simulation of the operation scenario can be launched. The simulation processing 

is performed through a Simulink layout dedicated to the application case. Figure 6 gives an 

example of such a simulator diagram. It basically consists, from a functional point of view, in 

connecting two entities: the control module and the plant model. 
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Figure 6: Example of case-study simulator within the SPIDER platform 

On the one hand, the control module has the function of EMS (Energy Management System) 

for the application. This module integrates all control algorithms dedicated to the calculation of 

setpoints to be applied to the different controllable components composing the energy 

simulated system. Depending on the complexity of the implemented control, this control 

module may contain several algorithms blocks and subsystems organized in hierarchical 

levels, from the high level control for planning (EPM module: Energy Planning Module) taking 

into account for instance forecasts up to the low level control for manageing the power setpoint 

for the current time step (PMM module: Power Management Module). 

On the other hand, the plant model corresponds to the modelling of the physical part of the 

installation and contains all the necessary component models, such as those for energy 

storage systems, PV panels, converters, etc. 

As illustrated in Figure 6, the setpoints to be applied on the components are transmitted from 

the Control Module block to the Plant Model block (Control_out signals); and in the opposite 

way, the Plant Model block communicates the necessary set of component states and power 

profiles to the Control Module block, such as the power injected to the grid or the state of 

charge of the batteries. 

Bringing together the control module and the plant model in the specific context of the 

application external conditions (input data time series) enables the simulation to reproduce the 

operation scenario in terms of setpoints computed by the control algorithms and induced 

behaviour (power profiles) of the energy system components. 

At the end of the simulation process, raw results consists in the simulation output time series, 

i.e. all logged output signals from the control module and the plant model: BESS power profile, 

grid injection power output, PV curtailment activation profile, battery state-of-charge values 

along the simulation duration, etc. These output time series correspond to the sequence of 

values taken by each logged variable over the simulation duration, their resolution is equal to 

the time step used for the simulation. 

The next and final step of the optimal sizing method (see Figure 4) aims to exploit the raw 

simulation results to compute the relevant key performance indicators which enable to make a 

decision on the optimal BESS size. These post-processing calculations are described in next 

section. 
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3.1.3 Post-processing calculations 
 

The purpose of post-processing for optimal size determination is to associate a performance 

value to each simulated configuration, enabling to have a common comparison criteria and 

identify which configuration, i.e. which size of BESS, is the best solution.  

Among the different categories of sizing criteria discussed in section 2.1, financial indicators 

are the most commonly used. They have the advantage of easily enabling the comparison of 

different alternatives through a common unit, and can be directly integrated in discussions with 

project investors for evaluating financial return and making decisions. 

BESS sizing criteria used in the present methodology are based on financial indicators, with 

the setting of a comprehensive techno-economic assessment to balance the economic value 

of the rendered service and the total system costs. It relies on the calculation of total system 

expenses and incomes. Incomes are application dependent since they may come from sales 

on energy markets, green certificates, feed-in tariffs, etc. For each component, expenses are 

obtained by summing up investment, total O&M and total replacement costs. O&M costs are 

applied each year and replacement costs are applied when equipment estimated life span is 

expired. The total system expenses are obtained by summing up expenses of all components. 

To enable proper comparison between the different configurations independently of the project 

lifetime, the residual financial value of the BESS at the end of the project is calculated and 

deduced from the total amount of expenses. 

The most appropriate financial indicator for BESS sizing criteria should then be chosen in 

regards to the purpose of the application. For standalone systems or generation units, LCOE 

(Levelized Cost of Energy, expressed in €/MWh) is generally well suited as it estimates the 

average cost of produced energy. But when the energy application is designed for more 

complex market rules where variable feed-in tariffs may be applied or ancillary services may 

be remunerated, other financial indicators like NPV (Net Present Value) or IRR (Internal Rate 

of Return) may be more suitable. Illustration of these different choices of financial indicator as 

sizing criteria will be given in the two illustrative use-cases developed in section 4. 

Table 2 below lists the implemented BESS sizing criteria and their definitions. 

Performance criteria Formula Details 

Levelized Cost of 

Energy 

Determine the average 

net present cost of 

electricity generation 

over the project lifetime 

𝑳𝑪𝑶𝑬 =  
∑

𝐶𝐴𝑃𝐸𝑋𝑛 + 𝑂𝑃𝐸𝑋𝑛 
(1 + 𝑟)𝑛

𝑁
𝑛=0

∑
𝐸𝑛

(1 + 𝑟)𝑛
𝑁
𝑛=0

 

𝐶𝐴𝑃𝐸𝑋𝑛  : total investment 

costs of year 𝑛 

𝑂𝑃𝐸𝑋𝑛  : total O&M costs of 

year 𝑛 

𝐸𝑛  : total electrical energy 

generated in the year 𝑛 

𝑟 : discount rate 

𝑁 : project lifetime 
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Performance criteria Formula Details 

Net Present Value 

Determine the present 

value of all future cash 

flows generated by a 

project, including the 

initial capital investment 

𝑵𝑷𝑽 =  ∑
𝐶𝐹𝑛

(1 + 𝑟)𝑛

𝑁

𝑛=0

 

𝐶𝐹𝑛  : cash flow (difference 

between incomes and 

expenses) of year 𝑛 

𝑟 : discount rate 

𝑁 : project lifetime 

Internal Rate of 

Return 

IRR is defined as the 

discount rate that 

makes the NPV equal 

to zero 

∑
𝐶𝐹𝑛

(1 + 𝑰𝑹𝑹)𝑛

𝑁

𝑛=0

= 0 

𝐶𝐹𝑛  : cash flow (difference 

between incomes and 

expenses) of year 𝑛 

𝐼𝑅𝑅 : internal rate of return 

𝑁 : project lifetime 

Table 2: BESS sizing criteria used in the study 

To be able to compute these final key performance indicators according to the formula 

presented in Table 2, some annual intermediate indicators need to be calculated from the 

simulation output time series results, such as the amount of yearly electrical energy generated, 

annual incomes, total operation costs including replacement costs when necessary, etc. 

Furthermore, this financial evaluation requires a set of economic assumptions that allow 

realistic estimates of investment, O&M and replacement costs for each component and that 

include a discount rate value close to the WACC (Weighted Average Cost of Capital) generally 

observed in the business field of activity of the project. It is worth mentioning that all optimal 

sizing indicators values computed in this study are highly dependent on this set of economic 

assumptions. 

3.2 Sensitivity study scope 
 

To provide to project investors and designers a better understanding on the most influencing 

drivers to consider during the BESS sizing procedure, a sensitivity analysis has been carried 

out for assessing the impact on BESS optimal sizing of several factors.  

This study has been performed through the described simulation method, using the 2 

illustrative use-cases described in section 4. To sum up the different areas explored by the 

sensitivity analysis, Table 3 below lists the different factors which have been investigated with 

their comparative simulation scenarios. 
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Influencing factor Face to face scenarios 

Precision of the 

BESS efficiency 

behaviour 

Baseline 

BESS model parameters include tables of precise 

efficiency values varying according to 

temperature, current and SOC 

Comparative 
BESS efficiency is set up as a constant value 

(average efficiency) 

Degradation of 

battery capacity 

due to ageing 

Baseline 

BESS model parameters include ageing data 

enabling the simulation to take into account the 

battery capacity degradation over time 

Comparative Battery capacity remains constant over time 

Degree of 

technical 

modelling of the 

BESS component 

Baseline 

In-depth performances battery modelling based on 

equivalent-circuit equations 

(EC_model) 

Comparative 

Simplified modelling of the energy/power 

behaviour of the BESS 

(E/P_model) 

Simulation time-

step 

Baseline Time-step of 1 mn 

Comparative #1 Time-step of 10 mn 

Comparative #2 Time-step of 1 hour 

Degree of 

complexity of 

control 

algorithms 

Baseline Basic control algorithms 

Comparative 
Advanced control algorithms (including 

optimization) 

Forecast quality 

when predictive 

control is facing 

forecast errors 

Baseline 
PV: standard day-1 forecast 

Load: persistence day+7 

Comparative #1 
PV: perfect forecast (actual PV production) 

Load: perfect forecast (actual consumption) 

Comparative #2 

PV: enhanced forecast with 50% fewer errors 

Load: enhanced forecast with 50% fewer errors  

 (average between baseline and perfect forecasts) 

Table 3: Sensitivity analysis scenarios 
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4 Illustrative application use cases 
 

The method implemented and the sensitivity study have been carried out for 2 different 

illustrative BESS application use cases: 

- BESS application #1: PV smoothing and peak shaving, for which the overall 

objective is to sell PV energy to the grid under several injection constraints. The details 

of this first use case are given in section 4.1. 

- BESS application #2: Hybrid microgrid, for which the overall objective is to entirely 

satisfy the electricity demand of an off-grid industrial load.  The details of this second 

use case are given in section 0. 

 The fact of using these two very different use cases in this study has two advantages:  

- Firstly, it enables to illustrate how the generic methodology developed in this report can 

be adapted to different use cases, for systems composed of various energy 

components and/or energy application purposes leading to define different sizing 

criteria, 

 

- Secondly, it helps to differentiate, among the influencing factors investigated through 

sensitivity analysis, those whose impact has the same magnitude regardless to the 

application from those whose impact is application-dependent. 

 

4.1 BESS application #1: PV smoothing and peak shaving  
 

4.1.1 Application description 
 

This application case corresponds to the call for tenders issued by the French Energy 

Regulatory Commission in 2015 for installing PV solar plants in French Non-Interconnected 

Islands. The full description of the call for tenders can be found on the French Energy 

Regulatory Commission website [46]. 

For these grid-connected PV power plants, an energy storage system must be used in order 

to control the power injection to the grid and to store some produced PV energy.  

A minimal capacity of the storage system is imposed by the call for tenders, set to 0,5MWh 

useful capacity per MW of installed PV peak power, at any time of the project life. To respect 

this constraint, the battery nameplate capacity must be chosen a little higher, to take into 

account both the deep of discharge (DoD) range and the capacity degradation due to ageing. 

In our study case, with a DoD of 90% and a capacity degradation up to 30% before battery 

replacement, the minimal nominal capacity should be set to: 
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𝑟𝑎𝑡𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚𝑖𝑛 =  
𝑢𝑠𝑒𝑓𝑢𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚𝑖𝑛

0.9 ∗ (1 − 0.3)
=  

0.5

0.9 ∗ 0.7
 ≈ 0.8 𝑀𝑊ℎ 𝑝𝑒𝑟 𝑀𝑊 𝑜𝑓 𝑃𝑉 

In order to sell the injected energy at the agreed feed-in tariff, the following main constraints 

must be respected: 

- Power injection profile must be announced in advance 

 

o The daily injection profile must be known in advance (the day before, at 16h00 

at the latest) by the grid operator and the producer shall respect it (outside a 

tolerance range of ±5% of the installed PV power (Ppeak), some financial 

penalties are applied). It has to be noted that the need to announce the profile 

the day before means that a PV production forecast for the day D+1 is 

necessary on day D. 

 

o The producer may update the injection plan 3 times during day D (according to 

updated weather forecast for instance) but only at precise time-slots defined as 

follows: 

 before 4h: possible delivery of an updated plan for period [6h00 ; 23h59] 

 before 10h: possible delivery of an updated plan for period [12h00 ; 23h59] 

 before 14h: possible delivery of an updated plan for period [16h00 ; 23h59] 

 

- PV smoothing: the PV fluctuations must be limited to specific ramp rates 

 

The values of maximum rates for power increase and decrease are defined as follows, 

according to specific periods in the day: 

Period in day Ramp rates to be respected 

0h00 – 10h00 

Power increase at a rate not greater than 0.6% of the PV 

installed capacity (Ppeak) per minute 

Power decrease at a rate not greater than 0.3% of the 

PV installed capacity per minute 

10h00 – 14h00 
Power increase and decrease at a rate not greater than 

0.3% of the PV installed capacity per minute 

14h00 – 19h00 

Power increase at a rate not greater than 0.3% of the PV 

installed capacity per minute 

Power decrease at a rate not greater than 0.6% of the 

PV installed capacity per minute 

Table 4: BESS application#1 - Maximum ramp rates values for injection to grid 

- Peak shaving: power injection during peak period 

 

In order to contribute at the mitigation of the daily peak power demand, the PV solar 

plant including the energy storage system must inject energy every day during the two 
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hours of the peak period (19h00 – 21h00) at a minimum power output of 20% of the 

PV installed capacity (20% of Ppeak). For the energy injected to the grid during the 

peak period, a bonus equal to 200€/MWh is added to the agreed feed-in tariff. 

 

To sum up, the requested operation is illustrated on Figure 7 and Figure 8. Figure 7 illustrates 

the planning rules to be observed when announcing the power injection profiles, whereas 

Figure 8 gives an example of PV production and resulting grid injection profile for a typical 

clear day.   

 

Figure 7: BESS application#1 - Planning rules for grid injection announcement 

 

 

Figure 8: BESS application#1 - Example of a daily injection profile  

 

On Figure 8, the illustrative feed-in tariff of 200€/MWh leads to a price of 400€/MWh during 

peak period due to the peak bonus of 200€/MWh. 
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4.1.2 Scenario configuration 
 

The simulation scenario has been set up for a 1 MW PV plant and a BESS composed of Li-ion 

batteries, which storage total capacity is varying between approximately 800 kWh (minimal 

size imposed by the call of tenders) and 1300 kWh. The main component configuration 

parameters are listed in Table 5. 

PV Plant 

Installed capacity (peak power) 1 MWp 

PV degradation rate 0.5% per year 

PV producible dataset 
1 year measurement data from a monitored 

PV plant in Corsica 

PV forecast dataset 
1 year historical irradiance forecasts of the 

Corsica plant location 

BESS 

Battery technology Li-ion  / app. 6.5 kWh per battery module 

Depth of discharge 90% (from 𝑆𝑂𝐶𝑚𝑖𝑛 = 5% to 𝑆𝑂𝐶𝑚𝑎𝑥 = 95%) 

Battery replacement Replacement when SOH is 70% 

Battery capacity 

From app. 800 kWh (minimal size imposed) 

up to app. 1300 kWh / 10 size configurations 

made of series/parallel modules assembly in 

coherence with converter DC voltage range 

DC/AC converter power Up to 700 kVA 

Table 5: BESS application#1 - System components setup 

 

4.1.3 Simulation of operation 
 

Figure 9 illustrates the simulation of the operation for a sequence of three particular days of 

the same year, which has been used for graphical verification of the correct behaviour of the 

simulated system: 

- Day 1 is a sunny clear day with a typical bell-shaped curve for PV production 

- Day 2 is a mixed day of alternating sunny and cloudy periods  

- Day 3 is a very dull day with a heavy cloud cover 
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Figure 9: BESS application#1 – Illustration of simulated operation 

This simulation figure shows that there are significant differences in operation, depending on 

the type of day. 

- Day 1 (sunny) corresponds to the baseline expected behaviour: the PV production 

which is over the 70% injection limit is used to charge the battery (BESS power <0) 

during the day and then discharged during the peak period. The engagement is 

respected within the tolerance of ±5% (on this illustrative example, the injection profile 

is higher than the announcement, at +5% tolerance, because the PV forecast was a bit 

pessimistic for this day). 

 

- For day 2 (mixed), it is noticeable that the battery has to discharge at the middle of the 

day to compensate the lack of PV, thus attempting to respect the engagement and 

avoid the penalties. Battery is rapidly empty (low SOC) and nothing can then be done 

to avoid penalties until there is enough PV production to charge again the BESS. PV 

production at the end of afternoon enables the battery to charge enough electricity to 

respect the engagement for the peak period in the evening. 

 

- Day 3 (dull) corresponds to the worst case, for which PV production is so low that the 

BESS cannot charge enough energy to respect the peak period injection constraints, 

leading to a high level of penalties. 
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These noticeable differences emphasize the need of taking into account the full variety of day 

types when computing the optimal size of the BESS, rather than performing an estimation only 

on a standard day case or even on the worst case. The use of a full year PV production 

measurement is therefore of great interest for the optimal size determination.  

4.1.4 BESS sizing criteria 
 

The economic model of this application, for which the income arises from the sale of electricity 

at a specified feed-in tariff reduced by any penalties applied when the announced power profile 

is not respected, leads to choose to use the NPV (Net Present Value) as the sizing indicator. 

In accordance with the NPV formula (reminded in Equation 1 below): 

- The cash flow of year zero (𝐶𝐹0) is defined as the total initial capital investment, i.e. PV 

plant and BESS procurement and installation costs, 

-  The cash flows of the following years (𝐶𝐹𝑛) are computed as the difference between 

annual incomes and expenses. The annual income corresponds to the amount paid by 

the grid operator during the year (sale of electricity reduced by any penalties applied). 

Annual expenses sum all OPEX costs for the specific year (O&M costs, including 

replacement costs when necessary). 

Net Present Value 

Determine the present 

value of all future cash 

flows generated by a 

project, including the 

initial capital investment 

𝑵𝑷𝑽 =  ∑
𝐶𝐹𝑛

(1 + 𝑟)𝑛

𝑁

𝑛=0

 

𝐶𝐹𝑛  : cash flow (difference 

between incomes and 

expenses) of year 𝑛 

𝑟 : discount rate 

𝑁 : project lifetime 

Equation 1: BESS application#1 - NPV indicator used as optimal sizing criteria 

 

The economic assumptions used to compute the NPV indicator are listed in Table 6. They are 

based on several recent economic studies  [47] [48] [49] [50] [51] about PV and storage. 

Category Designation Value 

Project  Project lifetime 20 years 

Discount rate 5 % 

Initial 

investment 

PV plant 825 € / kWp 

ESS battery & auxiliaries 350 € / kWh 

ESS converter & auxiliaries 200 € / kW 

Electricity 

sale 
Feed-in tariff 200 € / MWh 

Operation 

costs 

PV plant Per year, 3% of initial investment 

ESS battery  Per year, 3% of initial investment 
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Category Designation Value 

ESS converter Per year, 3% of initial investment 

Replacement 

costs 

ESS battery lifespan Until SOH reaches 70% 

ESS battery replacement cost Decrease trend over the 20 next 

years 

 

ESS converter lifespan 10 years 

ESS converter replacement cost Decrease trend over the 20 next years 

 

Table 6: BESS application#1 – Economic assumptions 

 

4.1.5 Optimal sizing reference curve 
 

Figure 10 depicts the NPV values obtained along the BESS sizes range explored through the 

simulations repetition process for the reference scenario. This reference scenario is 

summarized in Table 7: it consists in the combination of all baseline cases which were listed 

in Table 3 for the influencing factors sensitivity study description (section 3.2). The results 

obtained through this scenario are providing the most accurate values for sizing indicators, 

which will then be used as references in the sensitivity study comparisons to assess the impact 

of the investigated influencing factors.  

Influencing factor Reference scenario 

Precision of the BESS 

efficiency behaviour 

BESS model parameters include tables of precise efficiency 

values varying according to temperature, current and SOC 

Degradation of battery 

capacity due to ageing 

BESS model parameters include ageing data enabling the 

simulation to take into account the battery capacity degradation 

over time 

100 €

200 €

300 €

400 €

0 5 10 15 20

replacement year

ESS battery price trend (€/kWh)

50 €

150 €

250 €

0 5 10 15 20

replacement year

ESS converter price trend (€/kW)
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Influencing factor Reference scenario 

technical modelling of 

the BESS component 

In-depth performances battery modelling based on electrical 

equivalent-circuit equations (EC_model) 

Simulation time-step Time-step of 1 mn 

Control algorithms Advanced control algorithms (including GAMS optimization) 

Forecast quality A standard PV forecast is used 

Table 7: BESS application#1 - Reference scenario 

 

 

Figure 10: BESS application#1 – Optimal sizing reference curve 

 

Figure 10 shows that the evolution of the sizing indicator as a function of the BESS size has 

not an optimum curve shape, but is rather quite linear, with the minimum battery size imposed 

being the most profitable configuration. It can indeed be demonstrated that, because of the 

economic framework defined by the call of tenders, additional battery capacity costs are 

always higher than the additional incomes generated by a larger storage system.  

As the optimal size is always the smallest for this application, this will unfortunately prevent the 

sensitivity study from identifying when an influencing factor has an impact strong enough to 

change the value of the optimal size. Nevertheless the impact on the sizing criteria (Net 

Present Value) could be quantified.  
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4.2 BESS application #2: hybrid microgrid 
 

4.2.1 Application description 
 

The second application is related to a standalone hybrid microgrid, which is composed of a 

load to supply for the demand (industrial power profile), and of a diesel generator with the 

addition of solar PV for the generation, as represented on Figure 11.  

 

 

Figure 11: BESS application#2 - Hybrid microgrid topology 

 

This use case is typical of remote areas where electricity consumption is too low to justify the 

investment to connect them to the main grid. In the past, fossil fuel generators such as diesel 

generators have been heavily used for power supply in those areas. However, the rising cost 

of fuel for the generators, the decreasing cost of renewable energy technologies, as well as 

the environmental concerns, has led to standalone hybrid energy systems as an attractive 

solution for remote area power supply. 

Standalone hybrid energy systems generally include single or various kinds of non-renewable 

and renewable energy resources, e.g., diesel generators, solar PV, wind turbines or others. All 

standalone hybrid systems require a form of back-up power supply to ensure reliability and 

continuity of supply. In most cases, this is supplied by either a diesel generator or some form 

of energy storage system. 

The key objective of employing a BESS in a standalone hybrid system is to match the 

imbalance between renewable energy generation and electricity demand to ensure continuity 

of power supply. In this sense, the functions of diesel generators can be partially or completely 

replaced by renewable energy and BESS. 
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4.2.2 Scenario configuration 
 

The simulation scenario has been set up in accordance with a real standalone application in 

Africa, where an industrial load of approximatively 40 kW peak power is supplied by means of 

a 100 kVA diesel generator and a 130 kW PV Plant.  The main purpose of the BESS is to 

reduce the fuel consumption by storing the excess of electricity produced by the PV Plant and 

delivering it later to the load, thus minimizing the use of the diesel generator. 

As the imbalance between generation and demand can be managed by the BESS, it becomes 

also possible to use the diesel generator only at its best yield operating regime, which also 

contributes to optimize the fuel consumption. Details about component configuration are given 

in Table 8. 

Load 

Peak power 40 kW 

Load profile 

weekly consumption profile : 1 year data 

input obtained from some full-week power 

measurement samples randomly duplicated  

Diesel 

generator 

Rated power (PRP) 100 kVA / 80 kWe 

Fuel consumption 

Consumption @ 110% load (L/h) 25.50 

Consumption @ 100% load (L/h) 23.50 

Consumption @ 75% load (L/h) 16.50 

Consumption @ 50% load (L/h) 11.50 

Consumption @ 5% load (L/h) 3.50 

PV Plant 

Installed capacity (peak 

power) 
130 kWp 

PV degradation rate 0.5% per year 

PV producible dataset 
1 year measurement data from a monitored 

PV plant in Corsica 

PV forecast dataset 
1 year historical irradiance forecasts of the 

Corsica plant location 

BESS 

Battery technology Li-ion  / app. 6.5 kWh per battery module 

Depth of discharge 90% (from 𝑆𝑂𝐶𝑚𝑖𝑛 = 5% to 𝑆𝑂𝐶𝑚𝑎𝑥 = 95%) 

Battery replacement Replacement when SOH is 70% 

Battery capacity 

From app. 110 kWh up to app. 1100 kWh / 

10 size configurations made of 

series/parallel modules assembly in 

coherence with converter DC voltage range 

DC/AC converter power Up to 200 kVA 

Table 8: BESS application#2 - System components setup 
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4.2.3 Simulation of operation 
 

A graphical verification of the correct behaviour of the simulation could be done on the same 

3-days sequence as the first illustrative application (section 4.1.3), as represented on Figure 

12. 

The control strategy implemented for this illustration is a basic control, which consists in using 

SOC thresholds to start and stop the diesel generator: 

- The fuel generator is started when BESS SOC < 10%, i.e. when battery is almost 

empty, 

- The fuel generator is stopped when BESS SOC > 30%. 

As expected, the less PV production there is, the more frequently the fuel generator must be 

launched in order to supply the load and recharge the battery. 

 

 

Figure 12: BESS application#2 – Illustration of simulated operation 
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4.2.4 BESS sizing criteria 
 

For this standalone application case, LCOE is a well suited sizing indicator as it will enable 

to estimate the average cost of the energy produced to supply the industrial load. The optimal 

BESS size will be determined by the configuration for which the LCOE is the lowest. 

Regarding the LCOE formula (reminded in Equation 2 below): 

- The total initial capital investment for producing electricity - including PV plant, fuel 

generator and BESS procurement and installation – is accounted at year 0 (𝐶𝐴𝑃𝐸𝑋0), 

- For each following year, the operation costs will be summed, including all maintenance 

costs, fuel costs, and replacement costs when necessary, 

- In the denominator, the accounted energy is only the useful energy, i.e. the final 

electricity consumed by the load.  

Levelized Cost of 

Energy 

Determine the average 

net present cost of 

electricity generation 

over the project lifetime 

𝑳𝑪𝑶𝑬 =  
∑

𝐶𝐴𝑃𝐸𝑋𝑛 + 𝑂𝑃𝐸𝑋𝑛 
(1 + 𝑟)𝑛

𝑁
𝑛=0

∑
𝐸𝑛

(1 + 𝑟)𝑛
𝑁
𝑛=0

 

𝐶𝐴𝑃𝐸𝑋𝑛  : total investment 

costs of year 𝑛 

𝑂𝑃𝐸𝑋𝑛 : total O&M costs of 

year 𝑛 

𝐸𝑛 : total electricity 

consumed by the load in 

the year 𝑛 

𝑟 : discount rate 

𝑁 : project lifetime 

Equation 2: BESS application#2 - LCOE indicator used as optimal sizing criteria 

The set of economic assumptions used to compute the LCOE indicator are listed in Table 9. 

They are based on several recent economic studies  [47] [48] [49] [50] [51] about PV and 

storage. 

Category Designation Value 

Project  Project lifetime 20 years 

Discount rate 5 % 

Initial 

investment 

PV plant 825 € / kWp 

ESS battery & auxiliaries 350 € / kWh 

ESS converter & auxiliaries 200 € / kW 

Diesel generator 500 € / kW 

Operation 

costs 

PV plant Per year, 3% of initial investment 

ESS battery  Per year, 3% of initial investment 

ESS converter Per year, 3% of initial investment 

Fuel cost 0.8 € / L 
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Category Designation Value 

O&M cost per hour of diesel 

generator operation (excluding 

fuel consumption) 

3 € 

Diesel generator startup cost 6 € (2h of operation) 

Replacement 

costs 

ESS battery lifespan Until SOH reaches 70% 

ESS battery replacement cost Decrease trend over the 20 next 

years 

 

ESS converter lifespan 10 years 

Diesel generator lifespan 20 000 operation hours 

ESS converter replacement cost Decrease trend over the 20 next years 

 

Table 9: BESS application#2 - Economic assumptions 

 

4.2.5 Optimal sizing reference curve 
 

The LCOE values obtained along the BESS sizes range explored through the simulation for 

the reference scenario are represented on Figure 13. The reference scenario for this 

application case is summarized in Table 10. 

Influencing factor Reference scenario 

Precision of the BESS 

efficiency behaviour 

BESS model parameters include tables of precise efficiency 

values varying according to temperature, current and SOC 

Degradation of battery 

capacity due to ageing 

BESS model parameters include ageing data enabling the 

simulation to take into account the battery capacity degradation 

over time 

100 €

200 €

300 €

400 €

0 5 10 15 20

replacement year

ESS battery price trend (€/kWh)

50 €

150 €

250 €

0 5 10 15 20

replacement year

ESS converter price trend (€/kW)
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Influencing factor Reference scenario 

technical modelling of 

the BESS component 

In-depth performances battery modelling based on electrical 

equivalent-circuit equations (EC_model) 

Simulation time-step Time-step of 1 mn 

control algorithms 
Basic control algorithms (Genset start and stop on BESS SOC 

thresholds) 

Forecast quality A standard PV forecast is used 

Table 10: BESS application#2 - Reference scenario 

 

 

Figure 13: BESS application#2 – Optimal sizing baseline 

 

For this application case, the evolution of LCOE as a function of the BESS size reveals an 

optimum curve shape, as shown on Figure 13. The high LCOE for the smallest BESS 

configurations [100 – 300 kWh] is mainly composed of OPEX costs, due to the intense use of 

the fuel generator, and few CAPEX. On the opposite side, the LCOE for the largest BESS 

configurations [> 700 kWh] contains a strong proportion of CAPEX due to the high initial 

investment for the storage system procurement, and low fuel costs. Between the two ends of 

the curve, the optimal trade-off between BESS investment cost and fuel consumption reduction 

is obtained for a battery size of 440 kWh with the lowest LCOE value, here at 360€/MWh. 
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5 Sensitivity analysis results 
 

The following subsections describe the comparison results obtained for each of the influencing 

factor investigated through the sensitivity study, according to the scope detailed in section 3.2. 

As the conclusions are mostly similar for the 2 illustrative application cases, BESS 

application #2 related to hybrid microgrid has been chosen to exhaustively inspect the 

detailed results, since its optimum shaped curve is more suited to the graphic 

visualisation of impacts. 

In case of different conclusions found for BESS application #1, this is explicitly mentioned at 

the end of the relevant subsection. 

 

5.1 Influence of BESS efficiency precision 
 

The energy efficiency of a storage system is obviously one of the major characteristics 

impacting the performance of an application. This efficiency may be modelled in different 

manners for the BESS component simulation, either through a simple constant value or 

through some more complex equations aiming at reproducing more precisely the dynamic 

behaviour of the system.  

5.1.1 Variable versus constant efficiency parameters setup 
 

The purpose of this section is to compare the optimal sizing results between modelling BESS 

behaviour with a precise variable efficiency dataset and using a constant average efficiency 

single value. 

As introduced in section 3.1.1.2, the in-depth BESS model based on electrical equivalent-

circuit (EC_model) enables to use large sets of electrical data values to reproduce as precisely 

as possible the operation of the storage system. These data tables, in particular composed of 

battery open circuit voltage and internal resistance values measured under various conditions 

of current, temperature or state-of-charge, lead to define some variable efficiency, which 

instantaneous value depends on the instantaneous state of the system. Based on the specific 

data electrical values related to the Li-ion battery and DC/AC converter products chosen for 

the two illustrative application cases of the present study, Figure 14 illustrates the resulting 

efficiency curves as a function of the power setpoint applied to the system: from battery and 

converter individual efficiency curves, the overall BESS efficiency can then be deduced. 
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Figure 14: BESS variable efficiency curves 

To evaluate the influence on optimal sizing of variable versus constant efficiency, the baseline 

scenario uses the EC_model with the original parameters dataset, whereas the comparative 

scenario uses a different parameters dataset where all electrical values such as battery OCV 

and internal resistances have been set to their average value, leading thus to an average 

constant efficiency. All other parameters remain identical between the 2 scenarios, with their 

values set to the reference scenario.  

Precision of the BESS 

efficiency behaviour 

Baseline 

BESS model parameters include tables of 

precise efficiency values varying according to 

temperature, current and SOC 

Comparative 
BESS efficiency is set up as a constant value 

(average efficiency) 

Table 11: Face to face scenarios for variable/constant efficiency comparison 

Figure 15 below superimposes the two LCOE curves obtained respectively with the baseline 

and the comparative scenarios for the BESS application #2 (hybrid microgrid). With a negligible 

average deviation of 0.25%, the LCOE values obtained with the constant efficiency are 

identical to those obtained through the baseline, meaning that the optimal sizing process leads 

to the same result either with a complex dataset of variable efficiency values or with a single 

constant efficiency value. Same conclusion has been observed with BESS application #1. 

From a statistical point of view, this is a logical conclusion: over a 20 years period operation 
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simulation, the various efficiency operating states of the BESS follow a normal distribution and 

are equally dispersed around the average efficiency value.  

This proof result suggests the possible use of simplified BESS models in the optimal sizing 

process, where BESS efficiency parameter can be set as a constant single value, without risk 

on the optimal size determination. The benefits of using simplified models at the design stage 

are related both to the computational time reduction, as well as being able to overcome limited 

modelling skills or difficult access for the system designer to a large range of battery 

parameters. This subject will be further discussed in section 5.3 related to the sensitivity of 

BESS optimal sizing to the degree of technical modelling. 

 

Figure 15: Graphic comparison between variable and constant efficiency results 

 

5.1.2 Constant efficiency value approximation 
 

The previous section has demonstrated that BESS variable efficiency parameters can be 

replaced by the BESS average efficiency value without any difference in the optimal sizing 

results. This assumes that sufficient technical data related to the BESS enables to 

accurately estimate its average efficiency. If this is not the case, a rough approximation of 

the BESS global efficiency can lead to use an efficiency value parameter which may differ from 

the real equipment performance by a few percent. The sensitivity of the sizing indicator to the 

efficiency value setting is graphically represented on Figure 16 and Figure 17 below. Figure 

16 illustrates the impact of different constant efficiency values setting on the LCOE curves 

used for optimal size determination. While the actual average efficiency is 91% (orange curve), 

the efficiency settings to 85% and 95% lead to large deviations from the reference curve. As 

the general shape of the LCOE curve is nevertheless preserved, the optimal BESS size 

remains the same (440 kWh), but with a noticeable difference on the corresponding LCOE 

value. Figure 17 gives a quantification of the error made on the LCOE as a function of the 

300

350

400

450

500

550

0 200 400 600 800 1000 1200

LCOE (€/MWh)

Battery Size (kWh)

LCOE = f(Battery Size)

Baseline - variable efficiency  constant efficiency

Optimum

Same optimal sizing results
(average deviation on LCOE value: 0.25%)



Deliverable D7.5: Methodology report for application-specific design of BESS 

 
 

Page: 50 / 75 
  

efficiency value deviation. It emerges from this graphic that when the value of the sizing 

indicator has an importance for the project study, the average efficiency of the BESS must 

be carefully estimated, as an approximation error of 5% on the efficiency value (for example 

rounding 0.95 to 0.9) causes a difference of about 4% on the LCOE value.  

 

 

Figure 16: Impact on sizing indicator of different BESS efficiency settings 

 

 

Figure 17: LCOE mean absolute error along BESS efficiency approximation 
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5.2 Influence of taking ageing into account 
 

Batteries as energy storage systems have a drawback in that they degrade with 

charge/discharge cycling and over time. For Li-ion batteries, this degradation mainly causes a 

decrease of the usable capacity of the battery. The ageing process of electrochemical battery 

is commonly divided into two contributions: calendar and cycling ageing. Calendar ageing of 

battery is mostly due to formation of passivation layer on negative electrodes over time, which 

degrades battery even when it is just stored. Cycling ageing corresponds to the battery 

degradation due to its operation which is affected by the number of charge discharge cycles 

and strongly depends on the conditions under which the battery is operated, such as 

temperature, charging/discharging rate, and depth of discharge (DoD). 

A precise modelling of the battery ageing for optimal sizing purpose may be a difficult 

challenge, as it involves complex equations and requires a lot of data which are rarely 

available, even from battery manufacturers. The influence of battery ageing on optimal sizing 

can nevertheless be important since the capacity decrease over the project lifetime may be 

significant. 

5.2.1 Impact on optimal sizing of battery capacity degradation 
 

To assess the impact on optimal sizing of taking into account the battery capacity degradation 

over time, the study benefits from a state of health (SOH) computation module which is 

integrated into the EC_model. This module enables to precisely estimate the battery capacity 

degradation at each simulation step from ageing lab-extracted parameters specific to the Li-

ion chemistry of the battery selected for the illustrative application cases. It forms the baseline 

for the comparison analysis. The comparative scenario is obtained by neutralizing all ageing 

parameters, thus leading to a battery capacity which remains constant over time. All other 

settings are identical between the 2 scenarios (corresponding to the reference scenario). It is 

worth mentioning in particular that the replacement costs of the battery are computed to the 

same value in the 2 scenarios even if SOH value is artificially maintained as constant in the 

comparative scenario. In this way, the comparison is only focused on taking into account the 

technical impact due to the decrease of the useful battery capacity over time. 

Degradation of battery 

capacity due to ageing 

Baseline 

BESS model parameters include ageing data 

enabling the simulation to take into account the 

battery capacity degradation over time 

Comparative Battery capacity remains constant over time 

Table 12: Face to face scenarios for capacity degradation comparison 

Figure 18 illustrates the impact of taking into account the battery capacity degradation due to 

ageing in the optimal sizing procedure. Naturally, the LCOE is slightly higher when the 

degradation of BESS performances over time is taken into account. The impact is much 

stronger on the left side of the graph: for the smallest BESS configurations [100 – 400 kWh] 

the LCOE is mainly composed of OPEX fuel costs, which are even higher when the battery 
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capacity decreases. On the opposite side, the LCOE for the largest BESS configurations is 

mainly composed of CAPEX for initial investment, which is not affected by the change of 

scenario. Even if the optimal size (440kWh) will not be changed between these 2 scenarios for 

this application case, the important gap induced on the sizing indicator around the optimal 

configuration leads to be cautious and tends to demonstrate the importance of taking ageing 

into account: As shown in Table 13, the difference on the LCOE value for the optimal 

configuration is about 4.5% and increases between 5 and 10% for the smallest BESS 

configurations. 

 

Figure 18: Impact on sizing indicator of taking into account battery capacity degradation 

 

Baseline scenario 

- 

Ageing taken into 

account 

Comparative scenario 

- 

Without capacity 

degradation 

 

BESS size 

(kWh) 

LCOE 

(€/MWh) 

LCOE 

(€/MWh) 

Relative 

error 

111 519 487 6,17% 

222 421 388 7,84% 

333 376 352 6,38% 

444 360 344 4,44% 

555 369 361 2,17% 

666 386 379 1,81% 

777 405 399 1,48% 

888 425 424 0,24% 

999 448 446 0,45% 

1110 472 470 0,42% 

Mean error 3,14% 

Table 13: LCOE values comparison for capacity degradation impact 
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5.2.2 Approximation with constant but moderately degraded capacity 
 

In case of limited availability of accurate battery ageing data, a possible rough way of taking 

into account the capacity degradation over time in the optimal sizing procedure could be to run 

simulations with a constant but moderately degraded capacity. The manufacturer of the Li-ion 

battery simulated for the illustrative application cases recommends replacing the battery when 

its remaining useful capacity corresponds to 70% of its initial capacity, meaning the end of life 

of the battery at SOH=70%. An average degraded capacity thus corresponds to SOH=85%. 

The simulations launched with a constant battery capacity of 85% of the nominal capacity lead 

to an excellent approximation of the LCOE values obtained with the baseline, as shown on 

Figure 19 (green curve), with an average relative error around 0.5%. However, the average 

degraded capacity seems to be a relevant value in this case of figure only for specific 

reasons, such as the duration of the project (20 years) which is long enough for the battery to 

have some complete life cycles. There is no doubt that this method requires to adapt the 

constant degraded capacity to the application characteristics, which does not seem obvious to 

do. If the average degraded capacity is not set to the correct value, there is still a risk to 

approximate LCOE values with several percent of error, as illustrated by the purple curve on 

Figure 19 where constant degraded capacity has been set to 90%. 

 

 

Figure 19: Approximation of ageing impact through constant degraded capacity 
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Baseline scenario 

- 

Ageing taken into 

account 

Comparative 

scenario 

- 

Constant 

capacity 85% 

 Comparative 

scenario 

- 

Constant 

capacity 90% 

 

BESS size 

(kWh) 

LCOE 

(€/MWh) 

LCOE 

(€/MWh) 

Relative 

error 

LCOE 

(€/MWh) 

Relative 

error 

111 519 518 0,19% 507 2,31% 

222 421 422 0,24% 407 3,33% 

333 376 377 0,27% 368 2,13% 

444 360 362 0,56% 352 2,22% 

555 369 370 0,27% 367 0,54% 

666 386 388 0,52% 386 0,00% 

777 405 407 0,49% 405 0,00% 

888 425 430 1,18% 426 0,24% 

999 448 452 0,89% 450 0,45% 

1110 472 476 0,85% 473 0,21% 

Mean error 0,55% Mean error 1,14% 

Table 14: LCOE values obtained through constant degraded capacity 

 

5.2.3 Approximation with macro ageing data 
 

When precise ageing measurements data and/or dynamic ageing model are not available, 

another possibility is to use overall battery lifetime information given on the technical 

datasheets from the manufacturer. General trends on calendar ageing and cycling ageing 

contributions to the battery degradation can be used to perform some global estimation of the 

SOH indicator. In our case study, the datasheets of the li-ion battery contains some tables 

estimating the number of cycles the battery could performed in its life as well as calendar 

ageing general trend. By implementing in post-processing an equation giving the SOH as a 

function of the year and the number of cycles, it was therefore possible to get a yearly 

estimation of the battery capacity degradation without using the continuous ageing 

modelling module over a 20 year simulation. With this kind of “macro modelling” directly 

implemented in the post-processing calculations, it is even possible to limit the simulation 

at a single year period and then to use the indicators obtained in first year to extrapolate all 

annual key indicators for the 19 following years, as long as the application case characteristics 

enable to find some linearization or approximation rules which allow to iteratively deduce all 

annual incomes and costs from one year to the next. For the hybrid microgrid application case, 

it is for example possible to express the increase of the fuel generator operation costs as a 

function of the decrease of the battery capacity, enabling in thus to set an extrapolation 

method which deduces from the 1st year simulation results all the indicators that are required 

for the LCOE computation over the 20 years of the project lifetime. The LCOE results obtained 

through this extrapolation method using macro ageing data are depicted on Figure 20. The 

accuracy is entirely acceptable, with an average absolute error around one percent, but above 
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all the gain in computational time is considerable: with a simulation over a single year 

instead of 20 years, the LCOE calculation benefits from a time reduction factor of 20, as shown 

in Table 15. 

 

Figure 20: Approximation of LCOE values through extrapolation of a one-year simulation 

 

Baseline scenario 

- 

20y simulation using 

precise ageing model 

 

Comparative scenario 

- 

1y simulation 

extrapolated using 

macro ageing data 

 

BESS size 

(kWh) 

LCOE 

(€/MWh) 

LCOE 

(€/MWh) 
Relative error 

111 519 533 2,70% 

222 421 421 0,00% 

333 376 371 1,33% 

444 360 357 0,83% 

555 369 371 0,54% 

666 386 388 0,52% 

777 405 408 0,74% 

888 425 432 1,65% 

999 448 454 1,34% 

1110 472 477 1,06% 

Mean error 1,07% 

Computation 

time / config 

hh:mm:ss 
01:10:00 

hh:mm:ss 
00:03:30 

time reduction factor 

20 

Table 15: LCOE values obtained through extrapolation from 1 year simulation results using 
macro ageing data 
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To sum up this section about the battery performances degradation over time, taking into 

account the impact of ageing in optimal sizing procedure is something necessary. The 

advantages and disadvantages of the different techniques used in this study to estimate this 

degradation are summarised in Table 16.   

Ageing estimation method Pros Cons 

SOH computation integrated 
into BESS model: battery 

performances degradation is 
calculated at each 

simulation time-step 

 Results are the most 
precise 

 In-depth ageing parameter 
values difficult to collect 

 Ageing modelling requires 
expert skills 

 Computational extensive time 
required for simulation 

Simulation with constant but 
moderately degraded battery 

performances over the 
project lifetime 

 Ease of implementation 

 It may be difficult to find the 
appropriate average constant 
degraded capacity value in 
regards to the application and 
battery technology specificities 

Yearly estimates of 
performances degradation 
through the use of macro 

ageing data in post-
processing calculations 

 Rough ageing estimates 
more easy to obtain than 
detailed lab-extracted data 

 Faster calculations 
(degradation is only 
estimated once a year) 

 Possible loss of precision on 
sizing indicator results, 
depending on the reliability of 
the macro ageing estimates 

Table 16: Summary of the pros and cons of the methods used to take ageing into account in 
the BESS optimal size determination 

 

5.3 Influence of degree of technical modelling  
 

Now that it has been proven that BESS variable efficiency behaviour has no influence on 

optimal sizing and that some workarounds can be achieved to estimate the battery degradation 

impact without using a detailed ageing model in simulation, the interest of using an in-depth 

performances BESS model is considerably reduced. An electrical equivalent-circuit model 

(EC_model) has been used so far in the simulation processing: its equations precisely 

reproduce the electrical behaviour of the BESS component. However, one drawback of using 

such a model is that it requires a very large number of parameters composed of electrical 

values like battery open voltage and internal resistance measurements under various 

conditions of temperature, SOC and current, both for charging and discharging sequences. 

Firstly, these detailed data may be difficult to obtain from the manufacturer or may require a 

long period of characterization in laboratory. Secondly, they induce a significant computation 

time in simulation because the resolution of the various electrical equations involves carrying 

out several interpolations among numerous lookup tables at each time step. As average 

efficiency value or yearly estimates for ageing are sufficient to perform accurate optimal 

size determination, a simplified model of the BESS may be convenient and lead to ease the 

implementation as well as significantly decrease the overall calculation time. 
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To perform this comparison, LCOE values previously obtained through the use of the 

EC_model have been challenged with those obtained when using a simplified BESS model, 

here denoted as E/P_model. In contrast with the EC_model, the E/P_model doesn’t compute 

any detailed electrical equations such as battery current and voltage level but directly handles 

power and energy quantities from global efficiency parameter settings. Consequently, the 

parameter dataset is much less detailed in the case of the E/P_model and is mainly limited to 

the overall efficiency values of the whole system, which can either be set to a single value. For 

our case of figure, a constant BESS efficiency value of 91% has been set. Furthermore, the 

E/P_model doesn’t perform any SOH computations. As a consequence, taking ageing into 

account for optimal sizing should be done either by setting an initial degraded capacity 

value or by estimating the capacity degradation from macro data in post-processing 

calculations. These two possibilities have been explored in the results illustrated on Figure 

21. Both scenarios with E/P_model lead to very close results and give an accurate estimation 

of the indicator reference values computed in the baseline scenario, with an average absolute 

error around one percent. The second comparative scenario, using the extrapolation method 

over a single year period, is however much more advantageous in terms of computational time: 

as stated in Table 18, the optimal size determination is 140 times faster with this scenario than 

with the 20 years simulations involving the EC_model.  

Degree of technical 

modelling of the BESS 

component 

Baseline 

In-depth performances battery modelling based 

on equivalent-circuit equations 

(EC_model) 

Comparative 

Simplified modelling of the energy/power 

behaviour of the BESS 

(E/P_model) 

Table 17: Face to face scenarios for simulation time step comparison 

 

Figure 21: Impact on sizing indicator of using simplified BESS model 
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EC model 

dyn. ageing 

variable eff. 

20y simu 

E/P model 

cst SOH 85% 

cst eff. 91% 

20y simu 

 
E/P model 

cst eff.91% 

1y simu + 

extrapolation 

 

BESS size 

(kWh) 

LCOE 

(€/MWh) 

LCOE 

(€/MWh) 
Relative error 

LCOE 

(€/MWh) 
Relative error 

111 519 519 0,00% 528 1,73% 

222 421 416 1,19% 417 0,95% 

333 376 377 0,27% 370 1,60% 

444 360 363 0,83% 357 0,83% 

555 369 370 0,27% 371 0,54% 

666 386 388 0,52% 388 0,52% 

777 405 408 0,74% 408 0,74% 

888 425 432 1,65% 432 1,65% 

999 448 453 1,12% 454 1,34% 

1110 472 478 1,27% 477 1,06% 

Mean error 0,79% Mean error 1,10% 

Computation 

time / config 

hh:mm:ss 
01:10:00 

hh:mm:ss 
00:10:00 

time reduction 

factor 

7 

hh:mm:ss 
00:00:30 

time reduction 

factor 

140 
Table 18: Detailed results obtained through different BESS models 

 

5.4 Influence of simulation time step 
 

Techno-economic analyses are usually performed on a simulation time step of one hour 

without much justification on the suitability of such a choice. Increasing the time step has 

obviously an immediate benefit as it will reduce the required overall computation time (for a 

single simulation and by extension for the entire optimization process). However, we may 

wonder what could be the impact of using different simulation time steps on the overall optimal 

BESS sizing. 

The baseline used as the reference in this section corresponds to the last scenario 

implemented in previous section, i.e. the extrapolation method over a single year simulation 

involving the BESS simplified model. These baseline results obtained through a simulation 

time step of 1 minute are compared with the results obtained by running the same simulations 

with a time step value of respectively 10 minutes and 1 hour. 

Simulation time-

step 

Baseline Time-step of 1 mn 

Comparative #1 Time-step of 10 mn 

Comparative #2 Time-step of 1 hour 

Table 19: Face to face scenarios for simulation time step comparison 
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The results are depicted on Figure 22. Consistently, the 10 minutes simulation time step 

provides a better approximation of the baseline than the 1 hour time step; but on both cases, 

some large deviations - respectively of about 10% and 20% - can be observed for the smallest 

size of battery. 

On Figure 23, the simulation graphic representation at the different time steps of a 5 days 

operation period for the smallest BESS size helps to explain these deviations. They are due to 

a loss of information, all the more important as the time step is large, concerning the events 

that have a short duration, such as here the many brief restarts of the fuel generator. Below 

the figure, an extract of the indicators related to the fuel generator shows that whereas 44 

restarts are counted in the minute time step simulation, only 10 of them are observable with 

the hourly time step for the same 5 days period. This important loss of information is strongly 

impacting the evaluation of the diesel generator operation costs, and thus the LCOE values 

computed for the small BESS configurations.  

For the large BESS configurations, as the LCOE has a small proportion of OPEX and the 

generator restarts less frequently due to the larger battery capacity, the impact of the simulation 

step variation is lower. 

 

 

Figure 22: Impact of simulation time step on optimal sizing 
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EP_model 

Time step 1mn 

EP_model 

Time step 10 mn 

 EP_model 

Time step 1h 
 

BESS size 

(kWh) 

LCOE 

(€/MWh) 

LCOE 

(€/MWh) 
Relative error 

LCOE 

(€/MWh) 
Relative error 

111 528 478 9,47% 426 19,32% 

222 417 415 0,48% 410 1,68% 

333 370 372 0,54% 380 2,70% 

444 357 357 0,00% 355 0,56% 

555 371 370 0,27% 372 0,27% 

666 388 390 0,52% 391 0,77% 

777 408 409 0,25% 416 1,96% 

888 432 433 0,23% 435 0,69% 

999 454 454 0,00% 459 1,10% 

1110 477 478 0,21% 483 1,26% 

Mean error 1,20% Mean error 3,03% 

Computation 

time / config 

hh:mm:ss 
00:00:30 

hh:mm:ss 
00:00:05 

time reduction 

factor 

6 

hh:mm:ss 
00:00:03 

time reduction 

factor 

10 
Table 20: LCOE values obtained through different simulation time steps 

It should be noted that the time reduction factor is lower than the time-step ratios when the 

calculation is reduced to a few seconds, due to some incompressible duration (about 2 

seconds) of certain processing operations of the Simulink software. 

 

Indicators Unit 
Time step 

1 mn 
Time step 

10 mn 
Time step 

1h 

GenSet: time ON h 20 25 +20,62% 30 +46,70% 

GenSet: Startups Number 44 27 -38,64% 10 -77,27% 

GenSet: Fuel Consumption l 475 545 +14,83% 629 +32,40% 
Figure 23: Impact of different simulation time steps on a 5 days operation period for the 

smallest BESS configuration (111 kWh) 
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5.5 Influence of control strategy 
 

In this section is discussed the influence on optimal sizing of the control algorithms which 

manage the whole energy system in regards to the purpose of the application. For a same 

application case, different control strategy may be implemented, according to the degree of 

complexity of the control algorithms which have been developed.  

For the hybrid microgrid illustrative case, comparison of sizing results is made by separately 

processing the simulations with 2 different sets of control algorithms: 

- The basic control strategy is the one used so far for the baseline. Its main function is 

to start and stop the diesel generator according to the SOC level of the storage system:  

o When the battery is almost empty (SOC threshold has been set to 10%), the 

generator is started.  

o When there is a certain quantity of energy in the battery (SOC threshold has 

been set to 30%), the generator is stopped. 

Its secondary function is to regulate the constant balance between the power 

generation and the electrical consumption of the load. To fulfil this objective, battery 

capacity is primarily used as a buffer to compensate for any potential imbalances. In 

the event of excessive generation and a full battery, the PV production may also be 

reduced. 

 

- The advanced control strategy is more complex as the generator start and stop 

operations are no longer managed through SOC thresholds but through an optimization 

logic which has been implemented thanks to the interface with GAMS software. This 

optimization logic aims at minimizing the genset operation costs on a daily 

horizon. To achieve this objective, the optimization problem is fed both with a load 

consumption prediction and a PV forecast, enabling to determine the minimal quantity 

of additional energy that will be needed from the diesel generator and when it should 

be produced. As a result, both fuel consumption and genset startup numbers are 

minimized, leading thus to an operation cost reduction. Concerning the prediction 

inputs, a real day-ahead forecast has been used for PV and a persistent D+7 prediction 

has been built for the load consumption as it presents a weekly profile. 

As an illustration, Figure 24 compares the resulting operation for a 3-day simulation period 

between the 2 different control strategies: it can be observed that the fuel generator is started 

less frequently with the advanced control strategy. 

  Degree of complexity 

of control algorithms 

Baseline Basic control algorithms 

Comparative 
Advanced control algorithms (including 

optimization) 

Table 21: Face to face scenarios for control strategy comparison 

 



Deliverable D7.5: Methodology report for application-specific design of BESS 

 
 

Page: 62 / 75 
  

 

 

Figure 24: Comparison of simulated operation on a 3-day period with 2 different control 
strategies (BESS configuration is 220 kWh)  

 

Figure 25 shows that optimal sizing results are strongly affected by the choice of the control 

strategy, up to the point of changing the optimal BESS size. 

For small BESS configurations where the LCOE is mainly composed of OPEX costs, the 

reduction in operating costs induced by the advanced control strategy is so substantial that it 

moves the optimum of the LCOE curve from the BESS size of 440 kWh (LCOE value of 357 € 

/ MWh) to a smallest BESS size of 330 kWh (LCOE value of 344 € / MWh). Consequently, 

thanks to a higher degree of complexity of control algorithms, not only can a smaller BESS be 

installed, but also a decrease of the LCOE of 3.64% is achieved. 

For large BESS configurations where the LCOE is mainly composed on CAPEX costs, the 

enhanced control strategy doesn’t bring any advantage since the operating costs are already 

very low. LCOE is even a little higher: where the basic control can start the diesel generator to 

charge largest battery capacities (between SOC 10% and SOC 30%) once only for a period of 

several days, the optimized control restarts the generator more frequently because of the daily 

optimisation horizon setup. Some improvements may still be achievable in the advanced 

control algorithms by fine-tuning the optimisation horizon parameters. 
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Figure 25: Impact of control strategy on optimal sizing 

 

 

Baseline scenario 

- 

Basic control strategy 

 

Comparative scenario 

- 

Advanced control 

with optimisation 

 

BESS size 

(kWh) 

LCOE 

(€/MWh) 

LCOE 

(€/MWh) 
LCOE variation 

111 528 407 -22,92% 

222 417 381 -8,63% 

333 370 344 -7,03% 

444 357 350 -1,96% 

555 371 368 -0,81% 

666 388 390 0,52% 

777 408 413 1,23% 

888 432 436 0,93% 

999 454 459 1,10% 

1110 477 485 1,68% 

Optimal LCOE variation between the 2 scenarios -3,64% 

Table 22: LCOE values obtained through different control strategies 
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5.6 Influence of forecast quality 
 

This last section deals with the influence of forecast quality on optimal sizing. As seen in the 

previous section with the advanced control strategy, some predictive control algorithms may 

require some power generation or load consumption prognosis. This is also the case for the 

first illustrative application (BESS application #1) on PV smoothing and peak shaving where a 

PV forecast is required to announce in advance the power injection profile to the grid operator. 

One of the essential characteristics of a forecast is its quality, i.e. the level of errors 

between this forecast and the actual generation or consumption profile. To anticipate a given 

phenomenon, it is possible to get different forecasts which differ in their quality, depending on 

the forecasting technology used, the intelligence of the algorithms used, the data refreshment 

rate, etc. 

This raises the question of the impact on the optimal size determination of using forecasts 

which may differ in their quality. To evaluate this impact with the hybrid microgrid 

application, optimal sizing results are compared when using the 3 followings forecast time 

series: 

- As the baseline, a real PV day-1 forecast and load persistence day+7 profile (i.e. the 

same prediction inputs used in the previous section with the advanced control 

algorithms). 

- As comparative scenario #1, actual PV production and electrical load profile are used 

as “perfect forecasts”, i.e. as virtual error-free forecasts. 

- As comparative scenario #2, PV and load consumption enhanced forecasts are 

computed as the average profiles between the realistic forecast used in the baseline 

and the error-free forecast used in the comparative scenario #1, leading thus to 50% 

fewer errors than the baseline forecasts.  

Forecast quality 

when predictive 

control is facing 

forecast errors 

Baseline 
PV: standard day-1 forecast 

Load: persistence day+7 

Comparative #1 
PV: perfect forecast (actual PV production) 

Load: perfect forecast (actual consumption) 

Comparative #2 

PV: enhanced forecast with 50% fewer errors 

Load: enhanced forecast with 50% fewer errors  

 (average between baseline and perfect forecasts) 

Table 23: Face to face scenarios for forecast quality comparison 
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Figure 26: Impact of forecast quality on optimal sizing 

 
Baseline 

PV forecast D-1 

Load persistent 

PV perfect 

Load perfect 

 

PV 50% enhanced 

Load 50% enhanced 
 

BESS size 

(kWh) 

LCOE 

(€/MWh) 

LCOE 

(€/MWh) 

LCOE 

deviation 

LCOE 

(€/MWh) 

LCOE 

deviation 

111 407 383 -5,90% 397 -2,46% 

222 381 363 -4,72% 372 -2,36% 

333 344 333 -3,20% 338 -1,74% 

444 350 341 -2,57% 345 -1,43% 

555 368 362 -1,63% 365 -0,82% 

666 390 382 -2,05% 386 -1,03% 

777 413 407 -1,45% 410 -0,73% 

888 436 430 -1,38% 433 -0,69% 

999 459 452 -1,53% 456 -0,65% 

1110 485 477 -1,65% 481 -0,82% 

Mean deviation -2,61% Mean deviation -1,27% 

Table 24: LCOE values obtained through different forecast qualities 
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The results depicted in Figure 26 show that even if better forecast quality leads to decrease 

the LCOE, the general shape of LCOE curve is well preserved, which prevents the optimal 

size value from being moved with a different forecast quality. However, the magnitude of the 

impact of the forecast quality on the sizing indicator value highly depends on the application 

purposes: 

- For BESS application #2 related to the hybrid microgrid, a 50% improvement of the 

forecast quality induces a decrease of the optimal LCOE value by around 2%. 

 

- For BESS application #1, 50% fewer errors in the forecasts leads to a more significant 

improvement, with a difference of 15% on the NPV indicator used as optimal sizing 

criteria. This is explained by the fact that the compensation of forecasting errors through 

the use of the storage system is the main objective in this application: since revenues 

and penalties are depending on whether or not the injection plan announced in advance 

is respected, the level of forecast errors has obviously a higher impact on financial 

indicators.  
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6 Conclusion 
 

Among the wide range of techniques which can be used to achieve optimal sizing of BESS, 

the present document described a deterministic simulation-based methodology which can 

be applied for any type of energy system application. 

Since the main objective of the study was to provide a better understanding of the most 

influencing factors to consider when determining the optimal size of a BESS, this method 

was particularly well suited as it offers the adequate level of flexibility to perform various 

sensitivity analyses. 

By using two very different illustrative BESS use cases, the study enabled to: 

- illustrate how this generic methodology can be applied to different use cases, for 

systems composed of various energy components and/or different energy application 

purposes leading to define different sizing criteria, 

 

- discriminate, among the influencing factors investigated through sensitivity analysis, 

those whose impact has the same magnitude regardless to the application from those 

whose impact is application-dependent. 

 

The conclusions of the sensitivity analysis for each of the investigated factors are summarized 

in Table 25 below: 

Factor Conclusions 

Precision of 

the BESS 

efficiency 

behaviour 

A variable efficiency behaviour can be approximated by an average 

efficiency single value without any impact on optimal sizing. 

However, the average efficiency value must be set precisely since the 

sizing indicator value is strongly affected by this parameter. An error on 

BESS efficiency value causes an error bordering on the same 

magnitude on the sizing indicator. 

Degradation of 

battery 

capacity due to 

ageing 

Ageing must be taken into account in optimal sizing. 

In case of limited availability to precise ageing parameters, an 

estimation of average degradation is sufficient to obtain appropriate 

confidence levels on sizing indicators. 

Degree of 

technical 

modelling of 

the BESS 

component 

Optimal sizing does not require a high degree of technical modelling: a 

simplified model of BESS directly handling power and energy quantities 

from global efficiency parameters is adapted and leads to the same 

sizing indicator values, within a one percent interval, as an in-depth 

performances model based on equivalent-circuit equations. 
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Factor Conclusions 

Simulation 

time-step 

The influence of the simulation time-step on optimal sizing strongly 

depends on the application time constants related to the events 

impacting the operation costs or incomes. 

An hourly time-step should in general not be recommended as it could 

lead to an important loss of information about these events. 

When such events are related to PV fluctuation or fuel generator 

operation, like on the 2 illustrative cases, a time-step of 10mn seems 

suitable. 

Degree of 

complexity of 

control 

algorithms 

Strong impact: different control strategies may lead to a different 

optimal BESS size, as illustrated with the hybrid microgrid application.  

It is therefore recommended to clearly define the control strategy before 

determining the optimal size. 

Forecast 

quality when 

predictive 

control is 

facing forecast 

errors 

Highly depends on the application purpose: if the main function of 

BESS is to compensate for forecasting errors in the RE sources, as for 

illustrative application #1, forecast quality is of the highest importance 

for optimal sizing: a 50% improvement of the forecast quality induced a 

difference of 15% of the sizing indicator value for application #1. 

Table 25: Sum up of the sensitivity analysis results 

 

At the stage of modelling or collecting data for optimal sizing purpose, these conclusions help 

to concentrate the effort on the crucial factors which have the strongest influence on the optimal 

size determination. 

In addition, these sensitivity study results enable to identify how calculation time can be 

significantly reduced within an acceptable trade-off between the accuracy of the result and 

the computing time. As an illustration, by putting together into practice the conclusions related 

to the use of a simplified BESS model, to the setting of a time-step of 10 minutes and to the 

ageing estimation by extrapolating a single year simulation, computation time is divided by 840 

compared to the baseline scenario, with an average error below 2%. Figure 27 illustrates the 

resulting optimal sizing curve superimposed to the baseline reference for application #2 and 

Table 26 compares the LCOE values obtained in both cases as well as the calculation time 

required for each of the BESS configurations: while each configuration required 1h10mn of 

computing time with the baseline scenario, it only takes 5 seconds when the conclusions of 

the study are combined together. 
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.

 

Figure 27: Conclusive approximation with a time reduction factor of 840 
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EC_model 

20y simulation 

time step 1mn 

Approximation 

- 

E/P_model 

1y simulation 

time step 10mn 

 

BESS size 

(kWh) 

LCOE 

(€/MWh) 

LCOE 

(€/MWh) 
Relative error 

111 519 478 7,90% 

222 421 415 1,43% 

333 376 372 1,06% 

444 360 357 0,83% 

555 369 370 0,27% 

666 386 390 1,04% 

777 405 409 0,99% 

888 425 433 1,88% 

999 448 454 1,34% 

1110 472 478 1,27% 

Mean error 1,80% 

Computation 

time / config 

hh:mm:ss 
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hh:mm:ss 
00:00:05 

time reduction factor 

840 

Table 26: Detailed results for the conclusive approximation 
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Despite the fact that computing time can be significantly reduced with relevant approximations, 

this optimal sizing method, well suited for sensitivity analysis, has certain drawbacks related 

to its deterministic nature: 

- it requires to collect a large amount of data,  

- it doesn’t take into account the uncertainties of specific variables, such as weather 

related data (irradiance, forecasts) or consumption profiles, 

- a key concern is the need for a large number of simulations with varying battery 

capacities to reach the optimum solution. 

As it has been mentioned in section 2.2.4 about the hybridisation of different methods, these 

inherent weaknesses could however be mitigated by further enhancements which could take 

advantage of the strengths of other techniques such as probabilistic methods or direct search 

algorithms involving mathematical optimisation or heuristic approach. 

At last, it should be pointed out that the optimal BESS sizing performed through this study 

was related to single-function applications, but a further way to make the energy capacity 

(and by extension the physical size of the BESS) a less critical component is the use of 

advanced dispatch strategies to achieve multiple functions, allowing an existing BESS to be 

used more effectively and for system design to more effectively use the energy and power 

capacity of a BESS. 
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