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1 List of acronyms and abbreviations 
aFRR Automated Frequency Restoration Reserves 

AT Accelerated Transformation 

BESS Battery Energy Storage System 

CAPEX Capital expenditures 

CCGT Combined cycle gas turbine 

CCS Carbon capture and storage 

CExM Capacity Expansion Model 

CGA Current Goals Achieved 

DC Discrete current 

DSM Demand-side management 

DSO Distribution System Operator 

ENS Energy not served 

EV Electric vehicle 

FCR Frequency Containment Reserves 

FRR Frequency Restoration Reserves 

FSCD Flexibility Solution Contribution Distribution 

FSMS Flexibility Solution Modulation Stack 

GTC Grid Transfer Capability 

IAM Integrated Assessment Model 

LCA Life-cycle analysis 

LOLD Loss-of-load duration 

LOLE Loss-of-load expectation 

MAF Mid-Term Adequacy Forecast 

mFRR Manual Frequency Restoration Reserves 

NCA Neglected Climate Act 

NTC Net transfer capacity 

OCGT Open cycle gas turbine 

OPEX Operational expenditure 

OPF Optimal power flow 

P2G Power-to-gas 

PCM Production Cost Models 

PECD Pan-European Climate Database 

PEM Polymer electrolyte membrane (electrolysis) 

PSP Pump storage plant 

PV Photo-voltaic 

RES Renewable energy source 

RoR Run-of-river (hydro unit) 

TOTEX Total expenditure 

TSO Transmission System Operator 

TYNDP Ten-year network development plan 

VRES Variable Renewable Energy Source 
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2 Purpose of the document 
This document is intended to provide the appendixes to D1.3 deliverable: 

- Appendix A: AntaresSimulator modelling description  

- Appendix B: Dataset and weather dependent variable generation  

- Appendix C: Environmental impact indicators - proof-of-concept studies 
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3 Appendix A - AntaresSimulator modelling description 
The present section focuses on describing the set-up of the ANTARES simulations run within 

Task 1.2 with a particular emphasis on the modelling of the flexibilities. 

3.1 Grid model 
The grid model used in the simulation comes from the e-Highway2050 project (see [e-Highway 

2050]). It is made of 99 nodes representing the 33 European countries of the study (see figure 

below).  

Exchange capacities between countries and within country nodes are modelled via NTC which 

come from T1.1 results. Impedances of links and Kirchhoff laws are currently not taken into 

account.   

 

3.2 Generation capacities 
Except otherwise stated, installed capacities are given by the results of Task 1.1. 
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3.2.1 Thermal clusters1 
In order to identify the number of thermal units that are actually available in each cluster, 

thermal capacities are split into a number of identical units, which characteristics depend on 

the technology. The capacities are rounded to the closest integer number of units. Technical 

parameters used for each thermal cluster technology are given in the table below: 

Cluster 
technology  

Nominal 
capacity 

(MW) 

Min up 
time (h) 

Min down 
time (h) 

Min stable 
power 
(MW) 

Market bid 
(€) 

CO2 
emissions 

(tCO2/MWh) 2030 2050 

ocgt 250 0 0 120 129 172 0,488 

ccgt 500 3 3 150 110 118 0,327 

nuclear 800 168 168 500 14 14 0 

hard_coal 800 6 6 320 79 N/A 0,75 

lignite 800 24 24 320 77 N/A 0,91 

  

Thermal cluster availability is defined by forced and planned outage rates, common to all 

technologies, which are season dependent. 

  Months 
Forced 
outage 

duration 

Planned 
outage 

duration 

Forced 
outage 

rate 

Planned 
outage 

rate 

MTBF 
Forced 
outage 

MTBF 
Planned 
outage 

JAN - FEB 7 7 0,05 0 133 N/A 

MARCH 7 7 0,05 0,1 133 63 

APR. – 
OCT 7 7 0,05 0,23 133 23,6 

NOV 7 7 0,05 0,1 133 63 

DEC 7 7 0,05 0 133 N/A 

 

3.2.2 Renewable energies 
Power generation from wind (onshore and offshore) and solar is directly given by 35 capacity 

factor time-series for each country or cluster. These capacity factors are multiplied by the 

installed capacities and these technologies are modelled as must run units. 

3.2.3 Bio-energies 
Power generation from bio-energies (biomass, geothermal and waste) is modelled as must 

run units. Installed capacities are multiplied by a capacity factor of 40% to retrieve the same 

annual energy as the initial GENeSYS-MOD results.  

3.2.4 Hydro generation 
For all countries, run-of-river generation is given by one time-series of daily energy for each 

country and for each Monte-Carlo year (see details on the hydro generation time series in 

section 4.4). Run-of-river units are modelled as must-run generation. 

Inflows are given by one time series of weekly energy for each country and for each Monte-

Carlo year (see details on the hydro generation time series in section 4.4). For all countries, 

reservoir generation is managed using ANTARES “reservoir management heuristic”2. This 

heuristic adapts reservoir generation on an annual basis, with respect to annual inflows and 

                                                           
1 “thermal clusters” in Antares wording refers to a set of thermal plants located in the same area and 

having the same technical and economical parameters. 
2 More details in ANTARES documentation. See [AntaresSimulator]. 
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net load (load minus non-dispatchable generation). This means, the heuristic will allocate more 

hydro energy to months and weeks with higher net load, respecting the overall annual energy. 

The allocated weekly energy is then optimised by ANTARES within the hours of the week. 

3.2.5 Modelling of reserves requirements 
The built-in “day-ahead reserves3” functionality of ANTARES is used to take into account 

reserve requirements. This piece of functionality makes it possible to indifferently model some 

kind of FCR, aFRR and mFRR (i.e. generation available in less than 30 min). 

In practice ANTARES fictitiously increases the demand during the first phase of its optimisation 

so as to start a higher number of generators than the real demand would require. During the 

second phase of the optimisation, ANTARES adjusts the generation of these running 

generators to match the real demand, but it is not allowed to turn off generators. The reserves 

requirements assigned to each country and their calculation principles are described in D1.3. 

Due to generators technical constraints (minimum generation capacity and minimum up and 

down time), this can therefore lead to some additional spillage. Also reserve requirements may 

not be entirely fulfilled in case of unsupplied energy. It is worth noting that a part of the reserves 

can be provided by neighbouring countries, but in such cases the first phase ensures exchange 

capacities are available. 

Reserve restoration is currently not modelled: the power system is assumed to globally have 

enough capacity to restore generation after 1 hour. 

 

3.3 Flexibility modelling 

3.3.1 Flexibility list 
Power system flexibilities modelled in ANTARES simulations as part of T1.2 work consist of: 

- Pump Storage Plants (PSP) 

- Batteries (BAT) hosted within the grid 

- Power-to-gas (P2G) facilities producing gas intended both for power generation 

(power-out/power-in) as well as other usages leaving the power system realm (power-

to-x, in particular for synthetic fuel) 

- Management of electric vehicles load 

- Management of heat-pump load 

Flexibility provided by biogas, geothermal and waste units is currently out of scope. Such 

generators are considered as must-run units. 

3.3.2 Naming convention 
The following naming convention is used throughout this document: 

- Fictive nodes 4are prefixed with node number “00” 

- Fictive storage flexibilities are suffixed with label “_STO” 

- Flexibilities generation are suffixed with label “_gen” (ex. p2g_gen) 

                                                           
3 More details in ANTARES documentation. See [AntaresSimulator]. 
4 Fictive nodes are necessary in Antares to model advanced flexibilities or constraints, they do not 

represent a real geographical area contrary to other nodes.  
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- Fictive thermal generators, used for modelling purposes are prefixed with label “z_” (ex. 

z_hpl_gen) 

3.3.3 Pump Storage Plants modelling 
Closed Pump Storage Plant generation is managed on a weekly basis. It is modelled via a 

fictitious node “00_PSP_STO” which is connected to all nodes via a fictitious link. A fictitious 

generator “z_psp_gen” is added to each node with capacity that correspond to PSP generation 

capacity. 

The capacity of the fictitious link between the real node and the fictitious node corresponds to 

the node PSP storage capacity (pumping capacity). Capacity of the link is set to 0 in the 

opposite direction (from the fictitious node to the real node). 

 

Note: The value of the load and the capacity of the generator in the fictitious node must be 

greater than the sum of installed PSP capacities for all nodes.  

During the optimisation, it will be cost-effective to store energy on hour H1 and generate on 

hour H2 if: 

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑠𝑡𝐻2   − 𝑏 ≥ (𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑠𝑡𝐻1 − 𝑎)/𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑟𝑎𝑡𝑖𝑜 
 

with efficiency_ratio=0.75 

 

Generation costs “a” and “b” can therefore be chosen with 𝑏 = 𝑎/0.75, so that the formula 

above simplifies: 

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑠𝑡𝐻2 ≥ 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝐶𝑜𝑠𝑡𝐻1/0.75 
 

A weekly binding constraint ensures that all energy stored within a week is given back to the 

system within the same time period (using a 75% efficiency ratio):  

∑ 0,75 ∗ 𝑓𝑙𝑜𝑤(𝑁𝑂𝐷𝐸 → 𝑂𝑂_𝑃𝑆𝑃_𝑆𝑇𝑂) − 𝑧_𝑝𝑠𝑝_𝑔𝑒𝑛 = 0 

 

In order to enforce reservoir capacity constraints, two additional fictitious generators are used 

(“z_NODE_psp_1” and “z_NODE_psp_1”). These generators are located in a fictitious node 

called “00_xtra”, which is not linked to any real node. Their generation represents reservoir 

level and are linked via hourly binding constraints: 

𝑧_𝑁𝑂𝐷𝐸_𝑝𝑠𝑝_1(𝐻) = 𝑧_𝑁𝑂𝐷𝐸_𝑝𝑠𝑝_2(𝐻) 

~ 
NODE 

00_PSP_STO 

Fictive load: 100 000 MW 

Capacity: 100 000 MW 
Cost: a €/MWh 

Cost: b €/MWh 
Capacity: node PSP capacity 

~ 

z_psp_gen 
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𝑧_𝑁𝑂𝐷𝐸_𝑝𝑠𝑝_1(𝐻 + 1) = 𝑧_𝑁𝑂𝐷𝐸_𝑝𝑠𝑝_2(𝐻) + 𝑓𝑙𝑜𝑤(𝑁𝑂𝐷𝐸 → 00_𝑃𝑆𝑃_𝑆𝑇𝑂) − 𝑧_𝑝𝑠𝑝_𝑔𝑒𝑛/0,75 

To ensure continuity between the different weeks of the year, a third binding constraint imposes 

that the reservoir level equals to 50% of the capacity at the beginning and at the end of the 

optimisation period (i.e. the week). 

 

3.3.4 Grid batteries modelling 
Grid batteries use the exact same modelling as PSP with an efficiency ratio of 90% and daily 

(instead of weekly) cycle (and hence a daily binding constraint). 

 

3.3.5 Power-to-gas modelling 
Power-to-gas storage is mainly used for seasonal or annual flexibility, so the modelling 

techniques applied for batteries or PSP (hourly, daily or weekly binding constraints) cannot be 

used. The modelling approach is derived from management principles of hydro power units. 

Power-to-gas is modelled via a single fictitious node which represents both gas produced for 

future electricity generation (power-in) as well as for other usages (power-to-x). A gas 

generator in each “real” node is used to model power-out flexibility.  

 

Note: The value of the load and the capacity of the generator in the fictitious node must be 

greater than the sum of installed capacities for all real nodes.  

The control loop is achieved in a heuristic manner, thanks to judicious choice of C0 and C1 

costs. Obviously, C0 < C1. Additionally, if Cf is the smallest cost of power generation from fossil 

fuels, one shall also consider to set C0 < Cf in order not to produce “green gas” from fossil fuel 

and to actually “de-carbonate” power generation.  

According to known characteristics, on one hand, of electrolysis and methanation processes, 

and on the other hand, of CCGTs and OCGTs, the efficiency of the power_to_gas_in to 

power_to_gas_out cycle is expected to be lower than 40%. In our simulations, the observed 

efficiency of this cycle cannot be put as a constraint in the simulation, but is computed and 

checked ex-post. If this efficiency appears to be greater than 40%, CO2 emissions are 

corrected (using CCGT emission factors) to consider that a part of the power_to_gas_out 

generation will actually have to run on fossil gas. 

 

3.3.6 Electric vehicles load management 
In accordance with the current dominant use of cars, a daily cycle is assumed for electric 

vehicle charging. A given percentage of the daily electric vehicle load profile (6% in 2030 and 

~ 
NODE 

00_P2G_STO 

Fictive load: 100 000 MW 

Capacity: 100 000 MW 
Cost: C0 €/MWh 

Cost: C1 €/MWh 
Capacity: node power-out capacity 

~ 

ocgt/ccgt 
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2050) can be optimally placed by ANTARES. This is achieved via a fictive node with a loss-of-

load cost (VOLL) of 0 €, enforcing that the daily flow on the link equals to the optimised load 

value. Charging capacity is decreased by 2/3 between 9 am and 6pm on working days to reflect 

a lower vehicle connection rate to charging stations during working hours.  

Note: Vehicle-to-grid flexibility (i.e. ability for EV to actually inject power into the grid) is not 

considered at this stage. 

 

The daily binding constraint that ensures the pilotable electric vehicle load is actually 

consumed writes: 

∑ 𝑓𝑙𝑜𝑤(𝑁𝑂𝐷𝐸 → 𝑂𝑂_𝐸𝑉_𝑆𝑇𝑂

𝑑𝑎𝑦

) = 𝐴 ∗ ∑ 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑣𝑒ℎ𝑖𝑐𝑢𝑙𝑒 𝑙𝑜𝑎𝑑

𝑑𝑎𝑦

 

where A = 0.06 in 2050 and 2030. 

 

3.3.7 Heat-pump load management 
Heat-pump flexibility is currently simply modelled as a peak generator, with a high cost (to 

date, the threshold is set to 300 €/MWh) and an availability of 8 hours, centred on European 

peak load (currently set at 7pm). Load transfer and rebound effect are currently not taken into 

account as this flexibility is not expected to be widely used. This could be reconsidered based 

on results, as well as the option to switch to net load when determining the peak hours. 

 

NODE 

00_EV_STO Fictive load: 100 000 MW 
VOLL: 0 €/MWh 

NODE 

Cost: 300 €/MWh 
Capacity: node dsm heat-pump capacity 

Modulation: available [4pm – 11pm]  

~ 

z_hpl_gen 
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4 Appendix B - dataset and weather dependent variable 

generation 

4.1 Summary of the weather dependent data published by OSMOSE WP1 
In the first simulations run by the OSMOSE project, only 1 time-series of hydro and load data 

and 11 time-series of renewables hourly capacity-factors have been used. There was therefore 

no suitable correlation between the load and the meteorological conditions driving VRES 

generation, although this may have a significant impact on the Security of Supply Assessment. 

This document describes the work done by the project team to enhance this aspect, which is 

crucial for the relevance of the results. 

Data collection and model development represented more than 90% of the work and is a 

common barrier for prospective studies on the power system. To promote transparency on the 

assumptions, constructive criticism, and facilitate reuse and additional studies, RTE, EKC and 

TUB aimed from the very beginning of the project to make public all the data develop. Special 

attention was therefore paid to the licensing scheme of the data used to fuel the process, 

especially for the climate-dependent variables, which have a major impact on the Security-of-

Supply assessment: 

 When the first OSMOSE simulation was run, the most easily reusable data source that 

met this criterion was the e-highway 2050 dataset5. Unfortunately, this dataset only 

contained 1 time-series of load and hydro data and 11 time-series of renewables hourly 

capacity-factors. There was therefore no suitable correlation between the load and the 

meteorological conditions driving VRES generation. It was used as a starting point, but 

an action plan was immediately put in place to find a replacement dataset. 

 For the second simulation run, a dataset composed of 35 years of data (spatially and 

meteorologically coherent) was prepared and used. These data are available at two 

geographical scales (33 countries and 99 clusters6) and include: 

- RES capacity factors (onshore wind, offshore wind and solar PV) 

- Load profiles (non-thermosensitive, heating and electric vehicles) 

- Hydro time-series (run-of-river generation and reservoir inflows). 

In order to prepare these data, several open sources have been used: 

 The main source is the dataset produced by the Plan4Res H2020 project7. This data is 

available at the geographical resolution of the OSMOSE 99 clusters. Additionally, the 

Plan4Res project released demand data for most of the 33 EU countries modelled in 

OSMOSE. This demand data provides a single profile for the non-thermo-sensitive 

usages and the charging of electric vehicles, in addition to weather-dependent profiles 

for heating and air-conditioning. 

 The Plan4RES dataset relies in turn on the PECD v3 dataset (Pan-European Climate 

Database). The PECD dataset has also been used in ENTSO-E Mid-Term Adequacy 

Forecast (MAF) 2019 and 2020 provides 42 years of temperatures, RES capacity-

factors (onshore and offshore wind and solar) and hydro time-series (both run-of-river 

–RoR- and inflows) which are correlated from the geographical and meteorological 

point of view. Whilst the non-thermo-sensitive data has been reused without 

modifications in OSMOSE, the thermo-sensitive profiles have been reprocessed after 

                                                           
5 See [e-highway2050] 
6 The same geographical clusters as the ones used in [e-highway2050]. 
7 See [Plan4RES] 
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some inconsistencies were discovered (ex. peak load in Italy being twice the one of 

France for 1985). 

 The PECD v3 and the Plan4RES are based on a reanalysis of years 1981-2016 and 

therefore does not account for future effects of climate change. 

New electric vehicle charging profiles have also been created by OSMOSE to better reflect the 

expected natural charging patterns as found in the literature and to include thermo-sensitivity, 

which may account for up to 35% of the consumption of the vehicle in winter. Air-conditioning 

profiles have been discarded due to lack of information to accurately build them. Details of the 

building of these profiles are available in [appendix B]. Removing incomplete years, the 

OSMOSE data finally comprises 35 years of consistent data. This number may still not be seen 

ideal for an adequacy assessment but is already a significant step forward. 

Besides, hydro is modelled using more time series (35 instead of 1). Also, hydro parameters 

in 2030 and 2050 have been updated based on TYNDP2020: 

- Run-of-river generation capacities from TYNDP2020 for 2040 have been taken as 

expected in 2050. Generation capacities in 2030 have been scaled between current 

values and the ones expected in 2050. Daily generation from PECD have been scaled 

with respect to capacities. 

- Pumped storages and corresponding reservoir capacities (volumes in GWh) have been 

modelled as closed cycle with same generation capacities in 2030 and 2050 based on 

data from e-Highway2050 scenario Big&market (see [e-Highway 2050]) which are the 

same as data from the initial CGA scenario. 

- Reservoir generation capacities took into account the total hydro capacities from 

TYNDP2020 and run-of-river and PSP capacities determined as described above. 

Annual generation and reservoir capacities (volumes in GWh) have been taken from 

PECD (see [PECD]) and scaled to determined capacities. 

 

Figure 1: correlation between weather-dependent variables in OSMOSE WP1 dataset 

4.2 Load data 

4.2.1 Context and objectives 
As mentioned above, the single Monte-Carlo year of load time series published by e-highway 

was clearly insufficient to capture variability, which is crucial to assess flexibility requirements. 

In addition, the weather-dependent part of the load could not be easily identified in this dataset, 

although the energy transition is expected to foster the development of heat pumps throughout 

Europe, while today most European countries rely on natural gas for heating. As an aside, air 

conditioning is expected to increase at the same time, since climate change leads more 

frequent heat waves. 

The question about profiles is also relevant because new uses are emerging (heat pumps, 

electric vehicle), for which little is known, although they could represent a significant part of the 

consumption in 2050. 

Wind PV Load Hydro Outage

Highly correlated

Correlation taken into account
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The H2020 project Plan4RES made public a large dataset in 2020 with promising technical 

coverage in these respects: 

- 4 load profiles per country, for 

• Non-thermosensitive load (1 time series) 

• Electric heating (1 time series per Monte Carlo year) 

• Air conditioning (1 time series per Monte Carlo year) 

• Electric vehicle (1 time series) 

- All weather-dependent time series are based on a re-analysis over 1979-2018 of 

Copernicus Climate Change Service (C3S) data8). 

A key limitation of using this dataset is that reanalysis cannot properly capture climate change. 

However, Copernicus has recently provided scenarios corresponding to RCP 4.5 or RCP 8.5. 

Due to time constraints, waiting for their availability was not an option for OSMOSE WP19. 

A first attempt to use the coefficients of this dataset on OSMOSE WP1 data revealed some 

limitations, which led the project to set up ad hoc alternatives. 

A first issue affected the winter peak of the Italian load. After analysis, the coefficients for the 

thermosensitive load of Italy were found particularly volatile within the day. The project opted 

for a reassessment of the thermosensitive part of the Plan4RES load (see section 4.2.2). 

  

Figure 2: load time series for Italy (left) and France (right) with annual load computed by OSMOSE WP1 for 2050 

- 

Extreme values for the 1985 Monte Carlo tiem series (red) 

A second issue affected the summer peak of Norway. It was found to be the result of an 

inaccurate air conditioning coefficient. Under the current climate conditions, there is no obvious 

reason why the volume of air conditioning in 2050 should increase compared to today. Fine-

grained air conditioning modeling only makes sense when used in conjunction with weather 

scenarios compatible with RCP 4.5 or RCP 8.5, and is very complex and speculative in 

countries with almost no air conditioning today. The project decided to omit the air conditioning 

coefficient for all countries. 

                                                           
8 See [C3S]. As the same C3S weather years are used by PECD for VRES generation, the proper 

correlation between load and VRES generation time series is ensured. 

9 Although the RCP 4.5 and RCP 8.5 compatible datasets have been published by Copernicus before 

the end of OSMOSE, time constraints prevented WP1 to rerun the simulation with these new data. It is 

worth noting that the proposed methodology could be applied to them in a straightforward way. 
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Plan4RES electric vehicle time series were a “natural” candidate for OSMOSE WP1. 

Unfortunately, some characteristics of this dataset were found inaccurate for a study focused 

on assessing flexibility requirements and provisions: 

- EV profiles were found identical for all countries, and for all weeks along the year (no 

seasonal variation). 

- No thermosensitivity was considered. 

- The maximum charging load took place during the weekend, which contradicts 

reference data (see below profiles published by [JRC]). 

 

Figure 3: EV charging time series from the Plan4RES dataset – source [P4R]) 

Faced with this situation, OSMOSE WP1 decided to generate its own EV charging dataset. 

Finally, non-thermosensitive load were also missing for some countries in the Plan4RES 

dataset. A way to complement them had to be elaborated. 

4.2.2 Adaptation of Plan4RES non-thermosensitive load 

4.2.2.1 Methodology 

A country-to-country mapping was discussed. 

4.2.2.2 Data mapping 
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Countries Profiles 
mapped 

from 

IE IE 

IT IT 

LT LV 

LU BE 

LV LV 

ME HR 

MK HR 

NL BE 

NO NO 

PL PL 

PT ES 

RO HU 

Countries Profiles 
mapped 

from 

RS HR 

SE NO 

SI AT 

SK SK 

UK UK 

 

 

 

Table 1: mapping for non-thermosensistive load time series 

4.2.3 Adaptation of Plan4RES heating data 

4.2.3.1 Methodology 

The detailed analysis of Plan4RES time series showed that the load factor excursion primarily 

affected the short term time scale. Unfortunately, the detailed transfer function used by 

Plan4RES was not available to us. Since building a new model from scratch was a very 

complex task, OSMOSE WP1 decided to build upon the existing Plan4RES data and try to 

mitigate its most prominent side effects, while keeping the general logic. 

A comparative time scale analysis10 of the heating load published by Plan4RES and the 

temperature published by Copernicus (on which Plan4RES load is based) showed: 

- Similarly for load and temperature 

o A strong dependency on the Monte-Carlo year for the medium term component. 

o Conversely, the short term component is lowly dependent on the Monte-Carlo 

year. 

- However, the high similarity observed between countries in the temperature 

components is not reflected in the heating load components, especially for countries 

geographically close to each other like Czechia, Slovakia and Poland (see Figure 4: ), 

or Italy and Croatia, or the Netherlands and United Kingdom (see Figure 5). 

- This suggests that the transfer functions in the Plan4RES dataset are very varied 

across countries. 

                                                           
10 Spectral resolution: 

- The medium term time signal is computed based on filtering out wave lengths longer than 48 

hours or shorter than 6 hours. 

- The short term time signal is computed based on filtering out wave lengths longer than 6 

hours. 
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Figure 4: time scale analysis for Plan4RES load and Copernicus temperature - 

Czechia, France, Hungry Norway, Poland and Slovakia- January for 35 Monte-Carlo year 

  

Figure 5: time scale analysis for Plan4RES load and Copernicus temperature - 

Spain, Croatia, Italy, Latvia, Netherlands and UK - April for 35 Monte-Carlo year 

The transfer function between temperature and load is directly related to the specific socio-

cultural habits of citizens and the architecture of buildings (housing, offices, factories…). 

Variations between countries are therefore very likely. However, one of the pillar of the energy 

transition is buildings insulation to reduce heating (in winter) and cooling (in summer). Higher 

buildings insulation will affect the transfer functions by increasing thermal inertia, which in turn 

should reduce the dependency to specific habits. Thus, even if a massive switch to electric 

heat pumps until 2050 will induce a huge increase of thermo-sensitivity in many European 

countries, transfer functions are expected to become rather similar. OSMOSE WP1 decided 

to setup the heating load dataset for 2030-2050 with this assumption in mind. 
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This assumption was implemented by fitting a transfer function for Czechia from the Plan4RES 

heating load time series and applying it to the 33 countries. An additional filter was applied to 

the results to avoid negative heating values or positive heating values when the daily average 

temperature was over 14.5° C. Czechia was selected because its bi-modal daily pattern was 

found to be a kind of average of the observed daily patterns. 

A consistency check, the daily averaged heating coefficients in Plan4RES data and is the new 

model were compared, showing that the new fit introduced no bias at a daily time scale. 

 

Figure 6: total heating load – WP1 regression vs P4R value 

The load duration curves were also compared and found very similar. 
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Figure 7: load duration curves- Plan4RES vs OSMOSE WP1 - 

Plan4RES dataset (black) – New model before filtering (dotted) – New model after filtering (blue) 

The figures below illustrate the comparison between the OSMOSE WP1 dataset and the 

Plan4RES dataset in terms of total load times series, assuming the shares of non-

thermosensitive and thermosensitive annual energy obtained in the Current Goals Achieved 

scenario for 2050. 
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Figure 8: load time series- Plan4RES vs OSMOSE WP1 – Czech Republic (2050) 

 

Figure 9: load time series- P4R vs OSMOSE WP1 – France (2050) 
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Figure 10: load time series- P4R vs OSMOSE WP1 – Germany (2050) 

 

Figure 11: load time series- P4R vs OSMOSE WP1 – Italy (2050) 

4.2.3.2 Data mapping 

Since the principle of this step is to regenerate all thermosentive time series (except for 

Czechia), no question should be raised regarding mapping. However, there is an issue with 
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Bosnia-Herzegovina, for which Copernicus does not provide Hourly temperature time series. 

OSMOSE WP1 decided to match BA to RS for hourly temperature. 

4.2.4 Electric vehicle 

4.2.4.1 Methodology 

The goal of this section is to produce “natural load” charging time series for each country and 

each Monte-Carlo year. Indeed, the thermo-sensitivity of electric vehicle charging may account 

for up to 35% of the consumption of the vehicle in winter and therefore cannot be neglected. 

Insofar as thermo-sensitivity comes into play, correlation with thermo-sensitive load time series 

must be ensured. 

First, we must keep in mind that the charging profile differs is linked to the battery usage profile, 

with a certain delay. The use of the battery is mainly linked to the use of the vehicle (person.km 

or ton.km). Looking at the usage profile published by the Copernicus project [Copernicus 

Emission], we can distinguish for each country several time scales: 

- Annual profile by month (see Figure 12: ), 

- Weekly profile by day (with the main difference stemming from the distinction between 

working days and weekends, see Figure 13: ), 

- Daily profile by hour (see Figure 14, Figure 15:, and Figure 16). 

 
Figure 12: annual use profile in selected cities 

source [Copernicus] 

 
Figure 13: weekly use profile in selected cities 

source [Copernicus] 
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Figure 14: annual use profile in selected cities 

source [Copernicus] 

 
Figure 15: weekly use profile in selected cities 

source [Copernicus] 

 
Figure 16: weekly use profile in selected cities 

source [Copernicus] 

Due to the additional consumption for heating or cooling of the passenger cabin, but also to 

the reduced efficiency of the electric engine and the battery, the use of the battery is 

temperature-dependent11, which leads to a “delayed” thermo-sensitivity. Data are available for 

the Nissan leaf that allow the calculation of a temperature-consumption transfer function over 

a wide temperature range. Moreover, as this vehicle is equipped with a reversible heat pump 

(instead of an electric convection heater), this transfer function is considered a viable and 

realistic technical solution in the medium term. 

                                                           
11 EV consumption is also influenced by humidity, but this weather dependent variable is outside the 

scope of the variables directly available to OSMOSE WP1. 
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Figure 17: sensitivity of Nissan Leaf consumption to temperature 
source [NissanLeaf] 

The time lag between the discharge of the battery due to the car motion and the recharging is 

a crucial assumption. In practice, the recharging cannot be delayed for more than a few days 

without deteriorating the mobility service provided. 

As far as “natural” charging of EV (i.e. without centralized charging management) is concerned, 

a recent survey conducted by [JRC] showed a periodic behavior on a weekly basis, which most 

likely reflects the regularity of car owners’ habits. 

  

  

  

Figure 18: EV charging load profiles in Europe based on Travel Survey Data 
source [JRC] 

These available datasets have driven us to implement the following data generation process: 

- As charging cannot be delayed more than a few days, non thermosensitive yearly and 

weekly natural cycles for EV charging are expected to be aligned with EV battery use 

cycles. 
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- Non thermosensitive natural daily cycles for battery charging are based on JRC 

average data12. Three patterns are considered, one for weekdays, one for Saturdays, 

one for Sundays. 

- A mapping is proposed for the non-thermosensitive profiles of the 6 JRC countries to 

all OSMOSE WP1 countries. 

- The thermosensitive part of the daily profiles are computed to be correlated with 

Plan4RES data by using the historical hourly temperature time series, which were used 

to set up Plan4RES Heating and Air-conditioning datasets. 

- The thermosensitive effect is defined by the ratio of the battery consumption in the last 

24h in the current weather scenario, with respect to the “no effect” scenario. This 

coefficient is applied to the non-thermosensitive charging profile to get the 

thermosensitive charging profile. 

  

Figure 19: averaging process of JRC data to obtain more robust EV hourly profiles - 
JRC initial 90 sec time step data (left) vs identified hourly profiles (right) 

 

                                                           
12 The JRC profile (time step around 90 sec) were first sampled to 5 min time steps, then smoothed 

using a rolling window of 2 hours. The resulting data could be visibly categorized into three types, 

working days, Saturdays and Sundays. Finally, all working days were grouped together and an hour-by-

hour average was calculated. 
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Figure 20: process for computing thermosensitive EV charging coefficient time series 

Resulting time series exhibit a high level of thermosensitivity in winter (mainly heating) as 

well as in summer (cooling).  

 

Figure 21: thermosensitive hourly time series of EV charging for 7 countries 
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Figure 22: weekly average of total charging load (including heating and air-conditioning) for 10 countries 

For the “base charging profile”, without thermo-sensitivity, it averages to 1 for each country: a 

reminder this part of the EV load directly reflects the traffic. Hence, they are represent the 

“footprint” of one EV over the year. 

However, when thermo-sensitivity is applied, some countries (the colder ones in winter, the 

hotter ones in summer) will experience an additional load for heating and air conditioning. 

CT AL AT BA BE BG CH CZ DE DK 

charging 1.077 1.127 1.099 1.085 1.095 1.141 1.113 1.100 1.098 

CT EE ES FI FR GR HR HU IE IT 

charging 1.136 1.063 1.179 1.073 1.064 1.086 1.099 1.075 1.065 

CT LT LU LV ME MK NL NO PL PT 
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charging 1.126 1.099 1.131 1.099 1.097 1.081 1.181 1.111 1.052 

CT RO RS SE SI SK UK 
   

charging 1.108 1.099 1.164 1.097 1.113 1.083       

Table 2: average additional load factor due to EV thermosensitivity 

These results are consistent with the geographical intuition: 

- Due to heating, a typical EV in Norway consumes more than a typical EV in Germany, 
- Due to air conditioning, a typical EV in ES consumes more than a typical EV in PT 

(Portuguese temperature is less hot in summer than the Spanish one) 

In line with the assumption made in GENeYS-Mod, 6% of the daily load is considered flexible 

(see details in section 3.3.6). 

4.2.4.2 Data mapping 

5 main types of data are to be used in the process of EV time series generation: 

- Yearly road traffic profiles (in months) 

- Weekly road traffic profiles (in days) 

- Daily road traffic profiles (in hours) 

- Daily battery charging profile (in hours) 

- Temperature (1 year in hours) 

A mapping is necessary to be able to model all European countries. Unfortunately, countries 

for which data are available differ from one category to another. Additionaly, a timeshift is 

necessary to reflect the activity shift due to dawn and sunset. As data source for daily traffic 

and charging may differ, so may the time shift. This time shift is understood like this: 

New time (UTC) = Original data time (UTC) + timeshift 

Given the shape of the daily road traffic profiles as well as of the daily charging profiles, we 

assume they correspond to local times. As a consequence, and due to the fact that summer 

time is not modelled in OSMOSE until now (and questioned in the EU), we consider a “base 

timeshift” corresponding to the shift between local winter time and UTC, i.e.: 

- -1 for DE, DK, ES, FR, IT, NL and NO 

- -2 for GR 

- 0 for UK 

- And so on… 
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13 New hour (UTC) = File hour (UTC) + timeshift 
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14 New hour (UTC) = File hour (UTC) + timeshift 
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Table 3: mappings used to build EV times series 

 

4.2.4.3 Data mapping details – C3S monthly traffic profiles 

Name Sources and processing 

DE_MT Source C3S: 

 Germany – urban locations for urban Germany 

 Germany – rural locations for rural Germany 
OSMOSE: 

 average rural & urban 

DK_MT Source C3S: 

 Copenhagen for urban Denmark 

 Germany - rural locations for rural Denmark 
OSMOSE: 

 average rural & urban 

ES_MT Source C3S: 

 Madrid/Barcelone/Valencia for urban Spain 

 Spain – rural locations for rural Spain 
OSMOSE: 

 average rural & urban 

FI_MT Source C3S: 

 Oslo/Copenhagen for urban Finland 

 Germany – rural locations for rural Finland 
OSMOSE: 

 average rural & urban 

FR_MT Source C3S: 

 Paris for urban France 

 Germany – rural locations for rural France 
OSMOSE: 

 average rural & urban 

GR_MT Source C3S: 

 Athens for urban Greece 

 Spain - rural locations for rural Greece 
OSMOSE: 

 average rural & urban 

                                                           
15 New hour (UTC) = File hour (UTC) + timeshift 
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Name Sources and processing 

IT_MT Source C3S: 

 Milano for urban Italy, 

 Spain – rural locations for rural Italy 
OSMOSE: 

 average rural & urban 

NO_MT Source C3S: 

 Oslo for urban Norway 

 Germany - rural locations for rural Norway 
OSMOSE: 

 average rural & urban 

PT_MT Source C3S: 

 Madrid/Barcelona/Valencia/Athens for urban Portugal 

 Spain - rural locations for rural Portugal 
OSMOSE: 

 average rural & urban 

UK_MT Source C3S: 

 UK - urban locations for urban UK, 

 UK - rural locations for rural UK 
OSMOSE: 

 average rural & urban 

 

4.2.4.4 Data mapping details – C3S weekly traffic profiles 

Name Sources and processing 

DE_WT Source C3S: 

 Germany – Urban for urban Germany 

 Germany – Rural for rural Germany 
OSMOSE: 

 average rural & urban 

DK_WT Source C3S: 

 Copenhagen for urban Denmark 

 Germany/UK/Spain - Rural for rural Denmark 
OSMOSE: 

 average rural & urban 

ES_WT Source C3S: 

 Madrid/Barcelona for urban Spain 

 rural Spain 
OSMOSE: 

 average rural & urban 

FR_WT Source C3S: 

 Paris for urban France 

 Germany/UK/Spain - Rural for rural France 
OSMOSE: 

 average rural & urban 

GR_WT Source C3S: 

 Athens for urban Greece 

 Germany/UK/Spain - Rural for rural Greece 
OSMOSE: 

 average rural & urban 
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Name Sources and processing 

IT_WT Source C3S: 

 Milan for urban Italy 

 Germany/UK/Spain - Rural for rural Italy 
OSMOSE: 

 average rural & urban 

NO_WT Source C3S: 

 Oslo for urban Norway 

 Germany/UK/Spain - Rural for rural Norway 
OSMOSE: 

 average rural & urban 

UK_WT Source C3S: 

 UK - Urban for urban UK, 

 UK - Rural for rural UK 
OSMOSE: 

 average rural & urban 

Other_WT Source C3S: 

 MACC for urban Other,  

 Germany/UK/Spain – Rural for rural Other 
OSMOSE: 

 average rural & urban 

 

4.2.4.5 Data mapping details – C3S daily traffic profiles for working days 

Name Sources and processing 

DE_DTa Source C3S: 

 Berlin diurnal profiles (weekday) / Monday to Friday 
OSMOSE: 

 average 

DK_DTa Source C3S: 

 Copenhagen diurnal profiles (weekdays) 
OSMOSE: 

 _16 

ES_DTa Source C3S: 

 Madrid diurnal profiles (weekday) / Monday to Friday 
OSMOSE: 

 average 

FR_DTa Source C3S: 

 Paris diurnal profiles (weekday) / Monday to Friday 
OSMOSE: 

 average 

GR_DTa Source C3S: 

 Athens diurnal profiles (weekdays) 
OSMOSE: 

 _16 

IT_DTa Source C3S: 

 Milan diurnal profiles (weekday) / Monday to Friday 
OSMOSE: 

 average 

                                                           
16 Already published as an average 
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Name Sources and processing 

NL_DTa Source C3S: 

 Utrecht diurnal profiles (weekday) / Monday to Friday 
OSMOSE: 

 average 

NO_DTa Source C3S: 

 Oslo diurnal profiles (weekday) / Monday to Friday 
OSMOSE: 

 average 

 

4.2.4.6 Data mapping details – C3S daily traffic profiles for Saturdays 

Name Sources and processing 

DE_DTb Source C3S: 

 Berlin diurnal profiles (weekday) / Saturday 
OSMOSE: 

 _ 

DK_DTb Source C3S: 

 Copenhagen diurnal profiles (Saturdays) 
OSMOSE: 

 _ 

ES_DTb Source C3S: 

 Madrid diurnal profiles (weekday) / Saturday 
OSMOSE: 

 _ 

FR_DTb Source C3S: 

 Paris diurnal profiles (weekday) / Saturday 
OSMOSE: 

 _ 

GR_DTb Source C3S: 

 Paris, Milan and Madrid diurnal profiles (Saturdays) 
OSMOSE: 

 Average17 

IT_DTb Source C3S: 

 Milan diurnal profiles (weekday) / Saturday 
OSMOSE: 

 Average 

NL_DTb Source C3S: 

 Utrecht diurnal profiles (weekday) / Saturday 
OSMOSE: 

 Average 

NO_DTb Source C3S: 

 Oslo diurnal profiles (weekday) / Saturday 
OSMOSE: 

 Average 

 

                                                           
17 Shapes published for these cities are very similar for the other days. 
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4.2.4.7 Data mapping details – C3S daily traffic profiles for Sundays 

Name Sources and processing 

DE_DTc Source C3S: 

 Berlin diurnal profiles (weekday) / Sunday 
OSMOSE: 

 _ 

DK_DTc Source C3S: 

 Copenhagen diurnal profiles (Sundays) 
OSMOSE: 

 _18 

ES_DTc Source C3S: 

 Madrid diurnal profiles (weekday) / Sunday 
OSMOSE: 

 _ 

FR_DTc Source C3S: 

 Paris diurnal profiles (weekday) / Sunday 
OSMOSE: 

 _ 

GR_DTc Source C3S: 

 Athens diurnal profiles (Sundays) 
OSMOSE: 

 _16 

IT_DTc Source C3S: 

 Milan diurnal profiles (weekday) / Sunday 
OSMOSE: 

 _ 

NL_DTc Source C3S: 

 Utrecht diurnal profiles (weekday) / Sunday 
OSMOSE: 

 _ 

NO_DTc Source C3S: 

 Oslo diurnal profiles (weekday) / Sunday 
OSMOSE: 

 _ 

 

4.2.4.8 Data mapping details – JRC daily battery charging profiles for working days 

Name Sources and processing 

DE_DCa Source JRC: 

 High resolution profiles for Germany / Monday to Friday 
OSMOSE: 

 smoothing and average 

ES_DCa Source JRC: 

 High resolution profiles for Spain / Monday to Friday 
OSMOSE: 

 smoothing and average 

FR_DCa Source JRC: 

 High resolution profiles for France / Monday to Friday 
OSMOSE: 

 smoothing and average 

                                                           
18 Already published as an average 
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Name Sources and processing 

IT_DCa Source JRC: 

 High resolution profiles for Italy / Monday to Friday 
OSMOSE: 

 smoothing and average 

PL_DCa Source JRC: 

 High resolution profiles for Poland / Monday to Friday 
OSMOSE: 

 smoothing and average 

UK_DCa Source JRC: 

 High resolution profiles for UK / Monday to Friday 
OSMOSE: 

 smoothing and average 

 

4.2.4.9 Data mapping details – JRC daily battery charging profiles for Saturdays 

Name Sources and processing 

DE_DCb Source JRC: 

 High resolution profiles for Germany, Spain, France, Italy, Poland, UK / 
Saturday 

OSMOSE: 

 smoothing and weighted average 
(7*DE+1*ES+1*FR+1*IT+1*PL+1*UK)/12 

ES_DCa Source JRC: 

 High resolution profiles for Germany, Spain, France, Italy, Poland, UK / 
Saturday 

OSMOSE: 

 smoothing and weighted average 
(1*DE+7*ES+1*FR+1*IT+1*PL+1*UK)/12 

FR_DCa Source JRC: 

 High resolution profiles for Germany, Spain, France, Italy, Poland, UK / 
Saturday 

OSMOSE: 

 smoothing and weighted average 
(1*DE+1*ES+7*FR+1*IT+1*PL+1*UK)/12 

IT_DCa Source JRC: 

 High resolution profiles for Germany, Spain, France, Italy, Poland, UK / 
Saturday 

OSMOSE: 

 smoothing and weighted average 
(1*DE+1*ES+1*FR+7*IT+1*PL+1*UK)/12 

PL_DCa Source JRC: 

 High resolution profiles for Germany, Spain, France, Italy, Poland, UK / 
Saturday 

OSMOSE: 

 smoothing and weighted average 
(1*DE+1*ES+1*FR+1*IT+7*PL+1*UK)/12 

UK_DCa Source JRC: 

 High resolution profiles for Germany, Spain, France, Italy, Poland, UK / 
Saturday 

OSMOSE: 

 smoothing and weighted average 
(1*DE+1*ES+1*FR+1*IT+1*PL+7*UK)/12 
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4.2.4.10 Data mapping details – JRC daily battery charging profiles for Sundays 

Name Sources and processing 

DE_DCb Source JRC: 

 High resolution profiles for Germany, Spain, France, Italy, Poland, UK / 
Sunday 

OSMOSE: 

 smoothing and weighted average 
(7*DE+1*ES+1*FR+1*IT+1*PL+1*UK)/12 

ES_DCa Source JRC: 

 High resolution profiles for Germany, Spain, France, Italy, Poland, UK / 
Sunday 

OSMOSE: 

 smoothing and weighted average 
(1*DE+7*ES+1*FR+1*IT+1*PL+1*UK)/12 

FR_DCa Source JRC: 

 High resolution profiles for Germany, Spain, France, Italy, Poland, UK / 
Sunday 

OSMOSE: 

 smoothing and weighted average 
(1*DE+1*ES+7*FR+1*IT+1*PL+1*UK)/12 

IT_DCa Source JRC: 

 High resolution profiles for Germany, Spain, France, Italy, Poland, UK / 
Sunday 

OSMOSE: 

 smoothing and weighted average 
(1*DE+1*ES+1*FR+7*IT+1*PL+1*UK)/12 

PL_DCa Source JRC: 

 High resolution profiles for Germany, Spain, France, Italy, Poland, UK / 
Sunday 

OSMOSE: 

 smoothing and weighted average 
(1*DE+1*ES+1*FR+1*IT+7*PL+1*UK)/12 

UK_DCa Source JRC: 

 High resolution profiles for Germany, Spain, France, Italy, Poland, UK / 
Sunday 

OSMOSE: 

 smoothing and weighted average 
(1*DE+1*ES+1*FR+1*IT+1*PL+7*UK)/12 

 

4.3 Intermittent generation data 

4.3.1 Context and objectives 
In e-highway dataset, 11 Monte-Carlo years of RES time series were available. But this 

remained clearly insufficient to capture variability. In addition, it is essential to ensure time 

consistency between load and VRES time series, in order to guarantee a multivariate 

distribution in conformity with reality. 

As for the load, the H2020 project Plan4RES was a very promising source for wind and PV 

generation factors: however, a detailed analysis showed some issues with the distribution for 

wind factors. It was therefore decided to compare its performance with the Pan European 

Climate Database (see [PECD]), which is based on Coperniucs reanalysis as well (see [C3S]). 
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The comparison presented in Figure 23 uses the wind speed / 20 as a consistency criterion. 

From this analysis, PECD was finally chosen over Plan4RES for VRES time series. 

  
Figure 23: wind factor per data origin and Copernicus wind speed - 

2018 data – Plan4RES (P4R) vs PECD (ENTSOE) vs wind speed / 20  

NB: in the visual comparison of the time series (see Figure 24), the advantages of PECD are 

less obvious, but the identical origin of the weather data is well highlighted by the synchronicity 

of the curves. 

 

Figure 24: comparison of wind generation in Plan4RES (blue), and PECD (red) for 2012 
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Once PECD was selected for wind generation, it seemed convenient to use it for solar 

energy as well. 

4.3.2 Onshore wind generation time series 

4.3.2.1 Methodology 

Onshore wind power-factor profiles are taken from [PECD]. 

Power-factor time series are provided in two “flavours”: 

- 1 profile per country, 1 file per weather year 

- 1 profile per cluster, 1 file per weather year). 
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4.3.2.2 Data mapping 

The mapping between WP1 countries and clusters and PECD is as follows: 

 

COUNTRY CLUSTER PECD 

AL 70AL AL00 

AT 49AT AT01 

50AT AT02 

51AT AT03 

BA 63BA BA00 

BE 28BE BE00 

BG 66BG BG00 

CH 47CH CH00 

48CH19 CH00 

CZ 39CZ CZ01 

40CZ CZ02 

DE 31DE DE01 

32DE DE02 

33DE DE03 

34DE DE04 

35DE DE05 

36DE DE06 

37DE DE07 

DK 38DK DKW1 

72DK DKE1 

EE 73EE EE00 

01ES ES01 

02ES ES02 

03ES ES03 

04ES ES04 

05ES ES05 

06ES ES06 

07ES ES07 

08ES ES08 

09ES ES09 

10ES ES10 

11ES ES11 

FI 74FI FI01 

75FI FI02 

FR 14FR FR01 

15FR FR02 

                                                           
19 Mapped with 47CH (PECD: CH00) 
20 Mapped with 98IT (PECD: ITSA) 
21 Mapped with 80NO (PECD: NOS1) 
22 Mapped with 84NO (PECD : NON1) 

COUNTRY CLUSTER PECD 

16FR FR03 

17FR FR04 

18FR FR05 

19FR FR06 

20FR FR07 

21FR FR08 

22FR FR09 

23FR FR10 

24FR FR11 

25FR FR12 

26FR FR13 

27FR FR14 

99FR20 ITSA 

GR 68GR GR01 

69GR GR02 

HR 62HR HR00 

HU 58HU HU00 

IT 52IT ITN1 

53IT ITCN 

54IT ITCS 

55IT ITS1 

56IT ITSI 

98IT ITSA 

LT 77LT LT00 

LU 29LU LUB1 

LV 78LV LV00 

ME 64ME ME00 

MK 67MK MK00 

NL 30NL NL00 

NO 79NO NOS2 

80NO NOS1 

81NO NOS3 

82NO21 NOS1 

83NO NOM1 

84NO NON1 

85NO22 NON1 
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COUNTRY CLUSTER PECD 

PL 41PL PL01 

42PL PL02 

43PL PL03 

44PL PL04 

45PL PL05 

PT 12PT PT01 

13PT PT02 

RO 59RO RO01 

60RO RO02 

61RO RO03 

RS 65RS RS00 

SE 86SE SE01 

87SE SE02 

COUNTRY CLUSTER PECD 

88SE SE03 

89SE SE04 

SI 57SI SI00 

SK 46SK SK00 

UK 90UK UK01 

91UK UK02 

92UK UK03 

93UK UK04 

94UK UK05 

95UK UKNI 

IE 96IE IE00 

 

Table 4: mappings used to build onshore wind times series 

 

4.3.3 Offshore wind generation time series 

4.3.3.1 Methodology 

Offshore wind power-factor profiles are taken from [PECD]. 

Power-factor time series are provided in two “flavours”: 

- 1 profile per country, 1 file per weather year 

- 1 profile per cluster, 1 file per weather year). 

NB: a special handling is applied for NL for the scenario Common Goals Achieved (CGA) and 

only for 2050. In 2050, GENeSYS-Mod (see [GENeSYS-MOD]) invests 50 GW of wind offshore 

capacity in the North Sea; as a side effects of the clustering, this new capacity was located 

only on the Dutch offshore cluster, which seemed too concentrated. A patch is applied to part 

this new capacity over BE, DE, DK, FR and NL. 

Country Before 
patch 

(MW) 

After 
patch 

(MW) 

BE 3 033 6 720 

DE 16 497 36 554 

DK 3 268 7 241 

FR 7 875 17 449 

NL 51 623 14 331 

 

4.3.3.2 Data mapping 

Offshore wind is located in the corresponding country or land cluster. 

 

COUNTRY CLUSTER PECD Offshore 

AL 70AL AL00  

AT 49AT AT01 n.a. 

COUNTRY CLUSTER PECD Offshore 

50AT AT02 n.a. 

51AT AT03 n.a. 
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COUNTRY CLUSTER PECD Offshore 

BA 63BA BA00  

BE 28BE BE00  

BG 66BG BG00 n.a. 

CH 47CH CH00 n.a. 

48CH23 CH00 n.a. 

CZ 39CZ CZ01 n.a. 

40CZ CZ02 n.a. 

DE 31DE DE01  

32DE DE02  

33DE DE03 n.a. 

34DE DE04 n.a. 

35DE DE05 n.a. 

36DE DE06 n.a. 

37DE DE07 n.a. 

DK 
38DK 

DKW
1 

 

72DK DKE1  

EE 73EE EE00  

01ES ES01  

02ES ES02  

03ES ES03 n.a. 

04ES ES04  

05ES ES05 n.a. 

06ES ES06  

07ES ES07 n.a. 

08ES ES08 n.a. 

09ES ES09  

10ES ES10  

11ES ES11  

FI 74FI FI01  

75FI FI02  

FR 14FR FR01  

15FR FR02  

16FR FR03  

17FR FR04  

18FR FR05 n.a. 

19FR FR06 n.a. 

20FR FR07 n.a. 

21FR FR08  

22FR FR09  

23FR FR10 n.a. 

                                                           
23 Mapped with 47CH (PECD: CH00) 
24 Mapped with 98IT (PECD: ITSA) 

COUNTRY CLUSTER PECD Offshore 

24FR FR11 n.a. 

25FR FR12 n.a. 

26FR FR13  

27FR FR14 n.a. 

99FR24 ITSA  

GR 68GR GR01  

69GR GR02  

HR 62HR HR00 n.a. 

HU 58HU HU00 n.a. 

IT 52IT ITN1  

53IT ITCN  

54IT ITCS  

55IT ITS1  

56IT ITSI  

98IT ITSA  

LT 77LT LT00  

LU 29LU LUB1 n.a. 

LV 78LV LV00  

ME 64ME ME00  

MK 67MK MK00 n.a. 

NL 30NL NL00  

NO 79NO NOS2  

80NO NOS1 n.a. 

81NO NOS3  

82NO25 NOS1 n.a. 

83NO 
NOM
1 

 

84NO NON1  

85NO26 NON1  

PL 41PL PL01 n.a. 

42PL PL02 n.a. 

43PL PL03 n.a. 

44PL PL04  

45PL PL05  

PT 12PT PT01  

13PT PT02  

RO 59RO RO01 n.a. 

60RO RO02 n.a. 

61RO RO03  

RS 65RS RS00 n.a. 

SE 86SE SE01  

25 Mapped with 80NO (PECD: NOS1) 
26 Mapped with 84NO (PECD: NON1) 
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COUNTRY CLUSTER PECD Offshore 

87SE SE02  

88SE SE03  

89SE SE04  

SI 57SI SI00  

SK 46SK SK00 n.a. 

UK 90UK UK01  

91UK UK02  

COUNTRY CLUSTER PECD Offshore 

92UK UK03  

93UK UK04  

94UK UK05  

95UK UKNI  

IE 96IE IE00  

 

 

Table 5: mappings used to build onshore wind times series 

4.3.4 Solar generation times series 

4.3.4.1 Methodology 

Solar PV power-factor profiles are taken from [PECD]. 

Power-factor time series are provided in two “flavours”: 

- 1 profile per country, 1 file per weather year 

- 1 profile per cluster, 1 file per weather year). 

4.3.4.2 Data mapping 

The mapping for solar PV is identical to onshore wind (see section 4.3.2.2). 

4.4 Hydro generation 

4.4.1 Methodology 
For all countries, run-of-river generation is given by 35 time-series of daily energy for each 

country, which are modelled as must-run generation. 

Inflows are given by 35 time series weekly energy for each country. For all countries, reservoir 

generation is managed using ANTARES “reservoir management heuristic”27. This heuristic 

adapts reservoir generation on an annual basis, with respect to annual inflows and net load 

(load minus non-dispatchable generation). This means, the heuristic will allocate more hydro 

energy to months and weeks with higher net load, respecting the overall annual energy. The 

allocated weekly energy is then optimised by ANTARES within the hours of the week. 

All data are publicly available. Reservoir capacities (volumes) are from MAF2019 data set. 

4.4.2 Data mapping 
Some mapping was needed as: 

- Weekly inflow profiles reservoirs were only available for 13 countries. 

- Daily generation profiles for run-of-river were only available for 11 countries only. 

Then some adjustments and allocations were performed to ensure consistency between 

inflows, annual energy volumes, reservoir capacities and maximum power characteristics of 

each country. 

                                                           
27 More details in ANTARES documentation. 

See [AntaresSimulator] 
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Figure 25: reservoirs - weekly inflow profiles available for 13 countries 

Country 
2018 
reservoir 
(TWh) 

2018 reservoir 
capacity (MW) 

Reservoir 2050 
(TYNDP) 

Profile 

AL 5,9 1534 2402 RS / ME 

AT 10,1 8436 10843 AT 

BA 6,1 2000 1120 RS 

BE 0 0 2066 FR 

BG 3,4 1591 2800 BG 

CH 20,5 8152 15709 CH 

CZ 0,7 753 1195 AT 

DE 0,5 205 10864 AT 

DK 0 0 0 N/A 

EE 0 0 0 N/A 

ES 27,5 15107 21070 ES 

FI 0 0 3400 NO 

FR 30,9 2455 13500 FR 

GB 2,5 2830 8351 FR 

GR 5 3169 4349 IT 

HR 5,1 1669 2900 RO / RS 

HU 0 28 0 N/A 

IE 0 0 592 FR 

IT 10,9 9177 16456 IT 
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LT 0 0 1125 FI 

LU 0 17 1310 FR 

LV 0 0 1619 FI 

ME 0 0 1139 ME 

MK 1,4 567 994 ME 

NL 0 0 2500 FR 

NO 138 26773 35817 NO 

PL 0,6 555 2217 RO 

PT 4,8 4335 8466 PT 

RO 7,3 3566 4280 RO 

RS 1,2 401 1763 RS 

SE 61 16630 16184 SE 

SI 0 0 600 CH / AT 

SK 0,6 600 2292 AT 

Table 6: reservoirs - mapping for missing countries 

 

 

Figure 26: run-of-river - daily generation profiles available for 11 countries only 

 

Country 
RoR 2018 
(TWh) 

RoR 2018 
(MW) 

RoR capacity 
2050 (TYNDP) 

RoR 
profile 

AL 2,2 301 468 RO / IT 
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AT 24 5714 4672 AT 

BA 
  

1144 RO 

BE 0,3 125 117 DE 

BG 1,6 600 600 RO 

CH 16,9 4053 4139 CH 

CZ 0,9 334 365 SK 

DE 17,9 3781 4329 DE 

DK 0 7 7 DE 

EE 0,1 9 10 FI 

ES 6,6 1942 3850 ES 

FI 13,1 3148 0 FI 

FR 32,3 21092 13600 FR 

GB 3,4 963 142 FR 

GR 0,7 230 275 IT 

HR 1,8 426 500 RO 

HU 0,2 28 60 RO 

IE 0,7 238 216 FR 

IT 36,2 12768 5637 IT 

LT 0,4 127 138 FI 

LU 0,1 15 34 DE 

LV 2,4 1557 
0, we should 
check this FI 

ME 
  

132 SK / IT 

MK 0,2 109 151 SK / IT 

NL 0,1 38 38 DE 

NO 
 

5801 0 NO 

PL 1,3 402 1033 SK 

PT 7,3 2880 735 PT 

RO 10,4 2763 3291 RO 

RS 9,2 1990 2025 SK /RO 

SE 
  

0 N/A 

SI 4,6 1122 1500 CH /AT 

SK 2,9 1208 974 SK 

Table 7: run-of-river - mapping for missing countries 

 

4.5 Forecast data 

4.5.1 Context and objectives 
In order to assess the effect of look-ahead uncertainties on the operational processes, it was 

necessary to have at hand a dataset of “forecast data” consistent with the dataset used as 

“realised data”. Consistent means reflecting the probabilities of having a given forecast error 
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between the forecast and the data we use as realised data with the given look-ahead. The 

variable affected by this issue are load, wind generation and PV generation28. 

In WP2, UDE developed a methodology (implemented as an R package) to perform this task 

(see [D2.1]) based on the idea of preparing pseudo forecast data by adding suitable errors to 

the pseudo realised data. In this process the key is to embed in the error time series the kind 

of correlations (inter-temporal, geographical and between-variables correlations) that we can 

expect from the operational reality. 

However this module was designed by WP2 for market studies focused on Central Western 

Europe around 2035. Adaptations were necessary to use it for the 33 countries belonging to 

the geographical scope of WP1 over the whole 2020-2050 horizon, characterized by a strong 

increase in the share of VRES in all the considered countries. 

Therefore, a methodology was developed, for load, and for onshore-wind and PV generation, 

to match the general behaviour observed in the realised and day-ahead forecast data 

published on the ENTSOE transparency web site, and then extrapolate to it to 2030 and 2050: 

- Estimation of a target annual RMSE for each country, given the target share of 

renewables and load in 2030 and 2050, 

- Recalibration of the error times series to match a target annual RMSE, 

- Recalibration of the temporal autocorrelation by additional smoothing to match the 

regularity observe 2020 ENTSOE transparency reference data 

4.5.2 Methodology 
The general process for building forecast time series is as follows: 

- Analysis of available observed data until 2020 (source ENTSOE transparency), for 

load, wind generation and PV generation, 

- Determination of keys indicators summarising the behaviour of day-ahead forecast 

data for load, wind generation and PV generation with respect to realised data for each 

country until 2020, 

- Estimation of a target annual RMSE for each country, given the target share of 

renewables and load in 2030 and 2050, 

- Recalibration of the error times series to match a target annual RMSE, 

- Recalibration of the temporal autocorrelation by additional smoothing to match the 

regularity observe 2020 ENTSOE transparency reference data 

It should be noted that a thorough analysis of ENTSOE data led us to the conclusion that the 

country-to-country correlation for the day-ahead forecast errors are currently too low to be 

accounted for in the methodology (see Figure 30 for load, Figure 32 for PV generation, Figure 

31 for onshore wind generation). For similar reason, inter-variable correlations for a given 

country (i.e. correlations between load and wind, load and solar and wind and solar forecast 

errors, as illustrated for Germany in Figure 33) were neglected.  

Figure 34 to Figure 43 present the graphical comparison of ENTSOE forecast data and WP1 

simulated data for 2020 and France, showing how the proposed methodology is able to 

reproduce the general behaviour of forecast time series. 

                                                           
28 In theory, time series of hydro generation (especially run-of-river units) and thermal unit unavailability 

should also be taken into account. In OSMOSE WP1 the uncertainty effect of these two variables was 

considered to be of second order and neglected. 



   

 

49 

 

In the extrapolation step, rules for assessing the evolution of each country’s RMSE29 were 

derived, especially for countries that currently have little installed VRES capacity, or low 

thermo-sensitive part in their load. For all these weather-dependent variables, a trend can be 

observed on 2020 historical data (in log-log scale) between the RMSE and the annual energy. 

RMSE values for 2030 and 2050 have been obtained by extrapolating this trend30. 

 

Figure 27: proposed evolution of RMSE for load between 2020 and 2050, for 33 European countries 

                                                           
29 Root mean square of error, an indicator usually used to measure the accuracy of a forecast. 

30 As far as PV is concerned, the Netherlands are a clear outlier. It was assumed that this behaviour 

was linked to the fact that PV was an emerging technology in this country, and that the forecast process 

would mature and harmonize with the neighbouring countries. 

2020

2030

2050
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Figure 28: proposed evolution of RMSE for solar generation between 2020 and 2050, for 33 European countries 

 

Figure 29: proposed evolution of RMSE for wind generation between 2020 and 2050, for 33 European countries 

2020

2030

2050

2020

2030

2050



   

 

51 

 

In the following, data previously used in reference simulations are now considered as 

measured data (i.e. error free) and referenced as “pseudo-realised data”, whereas the newly 

produced forecast data are considered as their day-ahead estimations, and “pseudo-forecast 

data”.  

Note also that due to the computational complexity of producing suitable forecast data, only 

10 Monte-Carlo-years of pseudo-forecast data have been computed and used OSMOSE WP1. 

4.5.3 Qualitative and quantitative analysis of ENTSOE-transparency data 

4.5.3.1 Cross-country correlations for load forecast error 

 

Figure 30: correlation (by season) of load forecast error in ENTSOE data for 2020 for some countries 
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4.5.3.2 Cross-country correlations for PV forecast error 

 

Figure 31: correlation (by season) of solar generation forecast error in ENTSOE data for 2020 for some countries 
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4.5.3.3 Cross-country correlations for wind forecast error 

 

Figure 32: correlation (by season) of onshore wind generation forecast error in ENTSOE data for 2020 for some 

countries 
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4.5.3.4 Cross-variable correlation 

 

Figure 33: correlation between weather-dependent variables for Germany in  2020 

 

4.5.4 Calibration on 2020 ENTSOE-transparency data 

4.5.4.1 Load time-series - winter 

 

Figure 34: ENTSOE transparency day ahead load forecast time series – France in year 2020 

realised data (bold) vs day-ahead forecast (solid) 
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Figure 35: simulation of day ahead load forecast time series –  France in year 2020 

realised data (bold) vs day-ahead forecast in WP2 (dotted) vs adapted day-ahead forecast in WP1 (solid) 

 

4.5.4.2 PV generation time series - winter 

 

Figure 36: ENTSOE transparency day ahead solar generation forecast time series – France in year 2020 

realised data (bold) vs day-ahead forecast (solid) 

 



   

 

56 

 

 

Figure 37: simulation of day ahead solar generation forecast time series – France in year 2020 

realised data (bold) vs day-ahead forecast in WP2 (dotted) vs adapted day-ahead forecast in WP1 (solid) 

 

4.5.4.3 Wind generation time-series - Winter 

 

Figure 38: ENTSOE transparency day ahead wind generation forecast time series – France in year 2020 

realised data (bold) vs day-ahead forecast (solid) 
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Figure 39: simulation of day ahead wind generation forecast time series – France in year 2020 

realised data (bold) vs day-ahead forecast in WP2 (dotted) vs adapted day-ahead forecast in WP1 (solid) 

 

4.5.4.4 Temporal autocorrelations for load forecast error 
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Figure 40: ENTSOE load forecast error – European countries for year 2020 

ENTSOE data (white) vs simulated data (blue) 

 

4.5.4.5 Temporal autocorrelations for PV generation forecast error 

 

Figure 41: ENTSOE PV generation forecast error – European countries for year 2020 

ENTSOE data (white) vs simulated data (blue) 
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4.5.4.6 Temporal autocorrelations for wind generation forecast error 

 

Figure 42: ENTSOE PV generation forecast error – European countries for year 2020 

ENTSOE data (white) vs simulated data (blue) 
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4.5.4.7 Load duration curve for load forecast 

 

Figure 43: Load duration curve for load – European countries for year 2020 

realised data (dot) vs ENSTOE forecast (red) vs WP1 simulated forecast (blue) 
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4.5.4.8 Load duration curve for wind generation forecast 

 

Figure 44: Load duration curve for wind generation – European countries for year 2020 

realised data (dot) vs ENSTOE forecast (red) vs WP1 simulated forecast (blue) 
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4.5.4.9 Load duration curve for PV generation forecast 

 

Figure 45: Load duration curve for solar generation – European countries for year 2020 

realised data (dot) vs ENSTOE forecast (red) vs WP1 simulated forecast (blue) 
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4.5.4.10 Load forecast errors 

 

Figure 46: Forecast errors distribution for load – European countries for year 2020 

ENSTOE forecast (red) vs WP1 simulated forecast (blue) 
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4.5.4.11 PV generation forecast errors 

 

Figure 47: Forecast errors distribution for PV generation – European countries for year 2020 

ENSTOE forecast (red) vs WP1 simulated forecast (blue) 
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4.5.4.12 Wind generation forecast errors 

 

Figure 48: Forecast errors distribution for wind generation – European countries for year 2020 

ENSTOE forecast (red) vs WP1 simulated forecast (blue) 
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4.5.5 Application to 2030 

4.5.5.1 Load time-series – winter and summer weeks 

  
Figure 49: load pseudo-day-ahead-forecast and pseudo-realised for some European countries for 2030- 

pseudo-realised TS (bold) vs pseudo day-ahead-forecast (solid) vs WP2 pseudo day-ahead-forecast (dash) 
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4.5.5.2 PV generation time series – winter and summer weeks 

  
Figure 50: PV generation pseudo-day-ahead-forecast and pseudo-realised for some European countries for 2030- 

pseudo-realised TS (bold) vs pseudo day-ahead-forecast (solid) vs WP2 pseudo day-ahead-forecast (dash) 
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4.5.5.3 Wind generation time-series – winter and summer weeks 

  
Figure 51: wind generation pseudo-day-ahead-forecast and pseudo-realised for some European countries for 

2030- 

pseudo-realised TS (bold) vs pseudo day-ahead-forecast (solid) vs WP2 pseudo day-ahead-forecast (dash) 
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4.5.6 Application to 2050 

4.5.6.1 Load time-series – winter and summer weeks 

  
Figure 52: load pseudo-day-ahead-forecast and pseudo-realised for some European countries for 2050- 

pseudo-realised TS (bold) vs pseudo day-ahead-forecast (solid) vs WP2 pseudo day-ahead-forecast (dash) 
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4.5.6.2 PV generation time series – winter and summer weeks 

  
Figure 53: PV generation pseudo-day-ahead-forecast and pseudo-realised for some European countries for 2050- 

pseudo-realised TS (bold) vs pseudo day-ahead-forecast (solid) vs WP2 pseudo day-ahead-forecast (dash) 
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4.5.6.3 Wind generation time-series – winter and summer weeks 

  
Figure 54: wind generation pseudo-day-ahead-forecast and pseudo-realised for some European countries for 

2050- 

pseudo-realised TS (bold) vs pseudo day-ahead-forecast (solid) vs WP2 pseudo day-ahead-forecast (dash) 

 

4.6 File formats 
All time series are provided as text files organised as tabular (csv) formats. 

4.6.1 Time structure for load 
In WP1 and compliantly with a target year of 205031, all weather year are aligned with 205032: 

                                                           
31 The calendar logic of H2020 Plan4RES has been retained in OSMOSE WP1. 
32 For convenience with respect to CS3 origin, the weather years are referred to as “1982” to “2016” 
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 the first day of all load time series is a Saturday 

 the year is a non-leap year. 

When generating the load time series, the Plan4RES team decided to use the C3S dataset: 

 starting from the first January of the C3S dataset 

 “filling” the calendar in chronological order33 

As a consequence: 

 In the WP1 “2010” load time series (2010 is a “normal” non-leap year), 

o 2050/02/05 is based on 2010/02/05 weather conditions, 

o 2050/03/05 is based on 2010/03/05 weather conditions, 

o And so on… 

 In the WP1 “2016” load time series (2016 is leap year), 

o 2050/02/05 is based on 2016/02/05 weather conditions, 

o 2050/03/05 is based on 2016/03/04 weather conditions, 

o And so on… 

 

4.6.2 Time structure for VRES 
In WP1 and compliantly with a target year of 205034, all weather year are aligned with 205035: 

- the first day of all load time series is a Saturday 

- the year is a non-leap year. 

In PECD, in order to address leap year issue, the original February 29 was shifted to March 

01. We need to re-establish time consistency with load data. The assumption is that the 

consistency is ensured by the Plan4RES time reference. 

As a consequence, for leap year and for RES: 

- March 02 PECD => March 01 WP1 

- December 30 PECD => December 29 WP1 

- December 31 PECD => December 30 WP1 

- December 31 WP1 => December 30 WP1 (replication) 

4.6.3 Load – non thermosensitive factor 
Non thermosensitive load factors are provided in: 

 One file containing every country (33) 

o For each country, one 8760 hour time series for the considered horizon36. 

 

Name Content 

country country name (2-letter ISO code) 

time_id time Id (from 1 to 8 760) 

                                                           
33 Ex: in the WP1 “2010” load time series, 2050/02/05 is based on 2010/02/05 weather conditions. 
34 The calendar logic of H2020 Plan4RES has been retained in OSMOSE WP1. 
35 For convenience with respect to CS3 origin, the weather years are referred to as “1982” to “2016” 
36 The target year is assumed to be 2050, though no climate change effect is present is this dataset. 
As 2050 is not a leap year, one OSMSOSE year corresponds to 365 days, i.e. 8760 hours. 
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Name Content 

non_thermosensitive 
hourly factor of the non thermosensitive part of the 
country load (between 0.0 and 1.0)37 

 

4.6.4 Load – thermosensitive part 
Thermosensitive load factors are provided in: 

 35 files, each of which corresponds to a Monte Carlo year 

o Each file containing every country (33) for the given Monte Carlo year 

o For each country, one 8760 hour time series for the given Monte Carlo year 

and the considered horizon38. 

 

Name Content 

country country name (2-letter ISO code) 

timestamp time stamp of the historical weather data (YYYY-
MM-DD hh:mm:ss) 

time_id time Id (from 1 to 8 760) 

heating_coeff hourly factor of the thermosensitive part of the 
country load (between 0.0 and 1.0)39 

 

4.6.5 Load – electric vehicles 
Electric vehicles load factors are provided in: 

 35 files, each of which corresponds to a Monte Carlo year 

o Each file containing every country (33) for the given Monte Carlo year 

o For each country, one 8760 hour time series for the given Monte Carlo year 

and the considered horizon40. 

 

Name Content 

country country name (2-letter ISO code) 

timestamp time stamp of the historical weather data (YYYY-
MM-DD hh:mm:ss) 

time_id time Id (from 1 to 8 760) 

ev_charging hourly factor of the ev-charging load of the country 
(between 0.0 and 1.0)41 

 

                                                           
37 Load factors for a given country sum up to 1. 

38 The timeseries time index is the time stamp of the historical weather dataset used (between 1983 and 
2016, i.e. 35 years). However, the target year is assumed to be 2050, though no climate change effect 
is present is this dataset. As 2050 is not a leap year, all yearly time series are shrunk to one OSMSOSE 
year of 365 days, i.e. 8760 hours. 
39 Load factors for a given country sum up to 1. 
40 The timeseries time index is the time stamp of the historical weather dataset used (between 1983 and 
2016, i.e. 35 years). However, the target year is assumed to be 2050, though no climate change effect 
is present is this dataset. As 2050 is not a leap year, all yearly time series are shrunk to one OSMSOSE 
year of 365 days, i.e. 8760 hours. 
41 Load factors for a given country sum up to 1. 
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4.6.6 Generation – onshore wind 
Onshore wind capacity factors are provided in: 

 35 files, each of which corresponds to a Monte Carlo year 

o Each file containing every country (33) for the given Monte Carlo year 

o For each country, one 8760 hour time series for the given Monte Carlo year 

and the considered horizon42. 

 

Name Content 

country country name (2-letter ISO code) 

timestamp time stamp of the historical weather data (YYYY-
MM-DD hh:mm:ss) 

time_id time Id (from 1 to8 760) 

onshore_wind hourly factor of the onshore wind generation of the 
country (between 0.0 and 1.0)43 

 

4.6.7 Generation – offshore wind 
Offshore wind capacity factors are provided in: 

 35 files, each of which corresponds to a Monte Carlo year 

o Each file containing every country (33) for the given Monte Carlo year 

o For each country, one 8760 hour time series for the given Monte Carlo year 

and the considered horizon44. 

 

Name Content 

country country name (2-letter ISO code) 

timestamp time stamp of the historical weather data (YYYY-
MM-DD hh:mm:ss) 

time_id time Id (from 1 to 8 760) 

offshore_wind hourly factor of the offshore wind generation of the 
country (between 0.0 and 1.0)45 

 

4.6.8 Generation –photovoltaic 
PV capacity factors are provided in: 

 35 files, each of which corresponds to a Monte Carlo year 

o Each file containing every country (33) for the given Monte Carlo year 

                                                           
42 The timeseries time index is the time stamp of the historical weather dataset used (between 1983 and 
2016, i.e. 35 years). However, the target year is assumed to be 2050, though no climate change effect 
is present is this dataset. As 2050 is not a leap year, all yearly time series are shrunk to one OSMSOSE 
year of 365 days, i.e. 8760 hours. 
43 Load factors for a given country sum up to 1. 
44 The timeseries time index is the time stamp of the historical weather dataset used (between 1983 and 
2016, i.e. 35 years). However, the target year is assumed to be 2050, though no climate change effect 
is present is this dataset. As 2050 is not a leap year, all yearly time series are shrunk to one OSMSOSE 
year of 365 days, i.e. 8760 hours. 
45 Load factors for a given country sum up to 1. 
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o For each country, one 8760 hour time series for the given Monte Carlo year 

and the considered horizon46. 

 

Name Content 

country country name (2-letter ISO code) 

timestamp time stamp of the historical weather data (YYYY-
MM-DD hh:mm:ss) 

time_id time Id (from 1 to 8 760) 

pv hourly factor of the PV generation of the country 
(between 0.0 and 1.0)47 

 

4.6.9 Generation –photovoltaic (cluster version) 
PV capacity factors are provided in: 

 35 files, each of which corresponds to a Monte Carlo year 

o Each file containing every cluster (99) for the given Monte Carlo year 

o For each cluster, one 8760 hour time series for the given Monte Carlo year 

and the considered horizon48. 

 

Name Content 

timestamp time stamp of the historical weather data (YYYY-
MM-DD hh:mm:ss) 

time_id time Id (from 1 to 8 760) 

country country name (2-letter ISO code) 

cluster cluster code (e-highway convention) 

pv hourly factor of the PV generation of the cluster 
(between 0.0 and 1.0)49 

 

4.6.10 Generation –run-of-river daily energy 
Run-of-river energy data are provided in: 

 35 files, each of which corresponds to a Monte Carlo year 

o Each file containing every country (33) for the given Monte Carlo year 

o For each country, one 365 day time series for the given Monte Carlo year and 

the considered horizon50. 

                                                           
46 The timeseries time index is the time stamp of the historical weather dataset used (between 1983 and 
2016, i.e. 35 years). However, the target year is assumed to be 2050, though no climate change effect 
is present is this dataset. As 2050 is not a leap year, all yearly time series are shrunk to one OSMSOSE 
year of 365 days, i.e. 8760 hours. 
47 Load factors for a given country sum up to 1. 
48 The timeseries time index is the time stamp of the historical weather dataset used (between 1983 and 
2016, i.e. 35 years). However, the target year is assumed to be 2050, though no climate change effect 
is present is this dataset. As 2050 is not a leap year, all yearly time series are shrunk to one OSMSOSE 
year of 365 days, i.e. 8760 hours. 
49 Load factors for a given country sum up to 1. 
50 The timeseries time index is the time stamp of the historical weather dataset used (between 1983 and 
2016, i.e. 35 years). However, the target year is assumed to be 2050, though no climate change effect 
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Name Content 

country country name (2-letter ISO code) 

day day of the year (form 1 to 365) 

year Monte Carlo year (from 1982 to 2016) 

value daily energy 

 

4.6.11 Generation –storage weekly energy 
Reservoir energy data are provided in: 

 35 files, each of which corresponds to a Monte Carlo year 

o Each file containing every country (33) for the given Monte Carlo year 

o For each country, one 365 day time series for the given Monte Carlo year and 

the considered horizon51. 

 

Name Content 

country country name (2-letter ISO code) 

week week of the year (1 to 53) 

year Monte Carlo year (from 1982 to 2016) 

value weekly energy 

 

4.6.12 Generation –hydro units capacity (country version) 
Hydro units maximum capacities are provided in: 

 35 files, each of which corresponds to a Monte Carlo year 

o For each country, long term characteristics of hydro units (see detail in the 

table below) for the each horizon 

 

Name Content 

country country name (2-letter ISO code) 

year horizon (2030, 2040 or 2050) 

type information type: 

 “Reservoir_capacity (MW)” for hydro reservoir 
maximum capacity 

 “Reservoir_energy_annual (GWh)” for hydro 
reservoir annual energy 

 “Reservoir_volume (GWh)” for reservoir storage 
capacity 

 “RoR_capacity (MW)” for run-off-river maximum 
capacity 

 “RoR_energy_annual (GWh)” for run-of-river 
annual energy 

                                                           
is present is this dataset. As 2050 is not a leap year, all yearly time series are shrunk to one OSMSOSE 
year of 365 days, i.e. 8760 hours. 
51 The timeseries time index is the time stamp of the historical weather dataset used (between 1983 and 
2016, i.e. 35 years). However, the target year is assumed to be 2050, though no climate change effect 
is present is this dataset. As 2050 is not a leap year, all yearly time series are shrunk to one OSMSOSE 
year of 365 days, i.e. 8760 hours. 
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Name Content 

  “PSP_capacity (MW)” for pump storage plant 
maximum capacity 

 “PSP_volume (GWh)” for pump storage plant 
storage capacity 

value numerical value corresponding to “type” 

 

4.6.13 Generation –hydro units characteristics (cluster version) 
Hydro units maximum capacities are provided in: 

 One file containing every cluster (99) 

o For each cluster, long term characteristics of hydro units (see detail in the 

table below) for the each horizon. 

 

Name Content 

country country name (2-letter ISO code) 

cluster cluster code (e-highway convention) 

year horizon (2030, 2040 or 2050) 

type information type: 

 “Reservoir_capacity (MW)” for hydro reservoir 
maximum capacity 

 “Reservoir_energy_annual (GWh)” for hydro 
reservoir annual energy 

 “Reservoir_volume (GWh)” for reservoir storage 
capacity 

 “RoR_capacity (MW)” for run-off-river maximum 
capacity 

 “RoR_energy_annual (GWh)” for run-of-river 
annual energy 

  “PSP_capacity (MW)” for pump storage plant 
maximum capacity 

 “PSP_volume (GWh)” for pump storage plant 
storage capacity 

value numerical value corresponding to “type” 

 

4.6.14 Generation –thermal units characteristics  
Thermal units characteristics are provided in: 

 One file containing all available technology 

o For each technology, long term characteristics of thermal units (see detail in the 

table below) for the each horizon. 

NB: this file alos ensures the mapping between the technology description used in 

GENeSYS/OSeMOSYS data (TU Berlin, see [GENeSYS-MOD]) and Antares data 

 

Name Content 

year horizon (2030, 2050) 

type_tub type describing this technology in TU Berlin data 

type_antares type describing this technology in Antares data 

name_antares name given to the thermal unit 
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one_group_only this unit corresponds to one (yes) or several (no) 
physical thermal units 

nominal_capacity nominal capacity (in MW) 

min_up_time minimum up time (in hours) 

min_down_time minimum down time (in hours) 

min_stable_power minimum stable power (in MW) 

market_bid proportional cost 

CO2 CO2 emissions in gCO2/MWh 

percentage_available standard participation factor (between 0.0 and 1.0) 
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5 Appendix C: Environmental impact indicators - proof-of-

concept studies 

5.1 Context and objectives 
Designing an optimal mix of flexibility involves determining some kind of technical-economic 

merit order for flexibility. Given the variety of technologies that can be used to provide flexibility, 

this ranking cannot reasonably be done without adopting a holistic view. This approach 

emphasizes our need to describe and model all types of technologies that can provide flexibility 

with sufficient detail to accurately reflect their interactions with the rest of the mix (their dynamic 

constraints, fixed and proportional costs, etc…). 

However, the use of a technical-economic optimum (total costs minimization, and more 

generally social welfare maximisation) as a proxy for “common good” clearly points to a top 

down vision of energy policies. The underlying assumption is that the goal of economics is to 

rationally allocate resources, in a general equilibrium paradigm. To do this, externalities (in 

particular environmental and social ones) must be explicitly and accurately integrated, and 

individual utility functions are assumed to be well-known and translatable into an aggregated 

utility curve. 

These assumptions were already highly questionable in the context of monopolies, but the shift 

to a decentralized world tends to exacerbate the criticisms: a local decision-making paradigm 

is far from a rational central planner one; the environmental crisis illustrates how difficult it is 

to address sustainability. For instance, maximising social welfare tends to favour commercial 

exchanges at the expense of sufficiency. Therefore the traditional vision of the “common good” 

used by system planners may conflict with the ambitions of the energy transition. 

The energy transition is essentially about the most efficient solutions to reduce global Green 

House Gases (GEG) emissions. Unfortunately, climate change is only one aspect of current 

environmental concerns. The preservation of biodiversity, the exploitation and depletion of 

natural resources, waste or human health are just as crucial for human survival. This multi-

factorial context and the strong interactions between topics (see Figure 55) give rise to 

controversies, particularly with regard to the production and transmission of energy. For 

instance: 

- Hydraulics is questioned for its impact on the local ecosystem (disruption of the natural 

flow of rivers, creation of artificial water reservoirs leading to environmental impacts). 

- Although nuclear energy is a low carbon technology, it is controversial because of the 

long-term radioactive waste left as an ominous legacy to future generations, its 

influence on the local ecosystem (discharge temperatures of water used for cooling), 

and the consequences in terms of dissemination of radioactive materials in case of 

accident. 

- Variable renewable energies are criticized for their consumption of mineral resources. 

Solar panels are associated with a debate on the reality of their environmental balance 

due to the conditions of their manufacturing, often in Asia by processes that emit a lot 

of CO2. Wind turbines are suspected of disturbing nearby species and are accused of 

containing rare earths. 

- The raw material requirements related to the development of batteries for the needs of 

the electrical system, but more particularly for low-carbon mobility, have been 

highlighted. 

- Finally, the other energy carriers are not excluded from this debate: methanization 

plants are being contested on the grounds of groundwater pollution, questions are 

being asked about the consequences of increased use of biomass, wood heating can 
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induce fine particle pollution, and the possibility of biomethane leaks in gas pipelines 

or methanization plants cannot be ruled out. 

Like all human activities, energy production, transport or consumption technologies have an 

impact on the environment. In the debate, the intertwining of these different issues makes it 

difficult to make energy decisions, since none of them appears to be systematically the least 

environmentally friendly, apart from the absence of energy consumption. 

The objective of the environmental component of the OSMOSE WP1 study was to move 

beyond assumptions and prejudices by proposing a rigorous and systematic methodology for 

assessing the environmental impact of a power system mix scenario. The decision was taken 

to still use the criterion of cost minimisation to discriminate between options, but to complement 

it with other numerical indicators from the field of the Environmental Analysis (e.g., critical 

impact on water, depletion of rare minerals, human health…), in order to try to conciliate the 

different perspectives. 

From a methodological point of view, OSMOSE WP1 considers it essential to present the 

different indicators without trying to summarize them in a single socio-economic value: 

- On the one hand, the analysis cannot claim to be exhaustive at this stage. The 

environmental analysis is still an ongoing field of research. 

- On the other hand, reducing all the complexity of the world to a single indicator would 

prevent the actors of the democratic debate from fully measuring the different 

consequences of the options presented. This statement excludes in particular the use 

of monetization. 

- In practice, individual indicators are already very difficult to put in place. Biodiversity is 

a typical example. Despite the strong deterioration of biodiversity observed in the world 

and the considerable amount of scientific work on the subject, there is currently no 

consensus on an aggregate indicator that could efficiently summarize the 

consequences of energy transition scenarios on biodiversity. 

- Finally, environmental indicators currently exhibit uncertainties of different orders of 

magnitude. It is difficult to define a relevant and robust synthetic criterion in this context. 
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Figure 55: direct and indirect drivers of change  causing global declines in nature (source [IPBES]) 

To truly address the issue of environmental impact, it must be recognized that the actual 

footprint is not limited to the power generation phase. The construction and dismantling phases 

of the installations and the supply of fuel also generate impacts (see Figure 56). Moreover, one 

must consider a perimeter beyond the power system, namely the entire energy system, 

including energy uses, which makes the problem even more difficult. It is also important to 

track down the potential hidden relocation of impacts, especially for those, like climate change, 

that have a global effect. 

 

Figure 56: Flow chart of direct and life cycle impacts (source [EP 2050]) 

5.2 Methodology 
The analysis of life cycle impacts of the electrical system requires the use of characterisation 

factors for each of the technologies that make up the system and for each mid-point indicators 

that are under scrutiny. The ecoinvent database (see [Ecoinvent]) is the most comprehensive 

international inventory database to date and is used for this matter. However, projecting these 

data to 2050 and adapting them to the OSMOSE WP1 context is a challenge. 
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In order to integrate the possible evolutions of the long term context in the life cycle analysis 

of electrical installations, the proposed methodology is based on parameterized models. 

Parameterized models allow the analysis to focus on the evolution of the main factors that 

affect the results. About 100 parameters have been introduced in the datasets, such as the life 

span of the facilities, the manufacturing methods, the quantity of materials, or the carbon 

content of the energy mix used for manufacturing: 

- A sensitivity analysis is performed to identify the key parameters that significantly 

influence the variation of the life cycle analysis (LCA) results of the system. 

- A simplified model of the system is then generated, based on only the parameters 

explaining the majority of the variation in environmental impacts of the system under 

consideration. 

In practice, OSMOSE WP1 worked with the open source lca_algebraic library (see [LCA_Alg]), 

developed by the OIE MINES ParisTech research in the framework of the INCER-ACV project 

(see [INCER ACV]), and successfully tested in [EP 2050] (see details in [Douziech]). 

 

5.3 Preliminary findings 
Due to delays in the production and validation phase of the energy mix scenarios, the 

environmental impact assessment method could only recently be applied. This chapter will 

therefore be limited to presenting preliminary results, mainly with the aim of illustrating the 

richness and relevance of the parametric indicator analysis method through practical 

examples. 

The results presented here focus on the French case, as some benchmarks were available 

due to the recent publication of the "Energy Pathways to 2050" report (see EP 2050), although 

the methodology generates indicators for all the countries analyzed, as well as at the European 

scale. 

At this stage of the results analysis, it can be concluded that the energy transition carried out 

in the "Common Goals Achieved" (CGA) scenario changes the overall level of impact of the 

power system, as well as the distribution between technologies, and this for all the studied 

ILCD indicators (Climate change, Resources, Human health and Ecosystem quality, see 

sections 5.3.1 to 5.3.4). 

It will be no surprise if we take into account the rise of French generation from 532 TWh in 

2018 to 885 TWh in 2050 (massive electrification, see Figure 57). Moreover, the composition 

of the generation fleet is changing in a very profound way (see Figure 58).  
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Figure 57: load uses in the Common Goals Achieved scenario - 

time evolution of the French mix per technology  

 

Figure 58: Installed capacity in the Common Goals Achieved scenario - 

time evolution of the French mix per technology  
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5.3.1 Indicator Climate change 

 

Figure 59: Climate change –total climate change per technology (ILCD 2018  

time evolution of the French mix impact per technology in the Common Goals Achieved scenario 

 

5.3.2 Indicator Human health 

 

Figure 60: Human health – carcinogenic effects per technology (ILCD 2018)- 

time evolution of the French mix impact per technology in the Common Goals Achieved scenario  

 

 

Figure 61: Human health – non-carcinogenic effects (ILCD 2018  

time evolution of the French mix impact per technology in the Common Goals Achieved scenario 
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Figure 62: Human health – ionizing radiation (ILCD 2018  

time evolution of the French mix impact per technology in the Common Goals Achieved scenario 

 

 

Figure 63: Human health – ozone layer depletion (ILCD 2018  

time evolution of the French mix impact per technology in the Common Goals Achieved scenario 

 

 

Figure 64: Human health – respiratory effects, inorganics (ILCD 2018  

time evolution of the French mix impact per technology in the Common Goals Achieved scenario 
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5.3.3 Indicator Resources 

 

Figure 65: Resources – minerals and metals (ILCD 2018  

time evolution of the French mix impact per technology in the Common Goals Achieved scenario 

 

 

Figure 66: Resources –dissipated water (ILCD 2018  

time evolution of the French mix impact per technology in the Common Goals Achieved scenario 

 

 

Figure 67: Resources – land use (ILCD 2018  

time evolution of the French mix impact per technology in the Common Goals Achieved scenario 
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5.3.4 Indicator Ecosystem quality 

 

Figure 68: Ecosystem quality –fresh water and terrestrial acidification (ILCD 2018  

time evolution of the French mix impact per technology in the Common Goals Achieved scenario 

 

 

Figure 69: Ecosystem quality –freshwater ecotoxicity (ILCD 2018  

time evolution of the French mix impact per technology in the Common Goals Achieved scenario 

 

 

Figure 70: Ecosystem quality –freshwater eutrophication (ILCD 2018  

time evolution of the French mix impact per technology in the Common Goals Achieved scenario 
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Figure 71: Ecosystem quality – marine eutrophication (ILCD 2018  

time evolution of the French mix impact per technology in the Common Goals Achieved scenario 

 

 

 

Figure 72: Ecosystem quality – terrestrial eutrophication (ILCD 2018  

time evolution of the French mix impact per technology in the Common Goals Achieved scenario 
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