

OPTIMAL SYSTEM-MIX OF FLEXIBILITY Solutions for European electricity

Project Summary

The project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 773406

Version June 2021

Flexibility is understood as a power system's ability to cope with variability and uncertainty in demand, generation and grid, over different timescales.

OSMOSE PROJECT

OSMOSE PROJECT The consortium

- ✓ H2020 EU funded
- ✓ 27M€ budget
- ✓ 33 partners
- ✓ Leaders: RTE, REE, TERNA, ELES, CEA, TUB
- ✓ Jan 2018 Apr 2022

Objectives and WPs

Simulations of long-term scenarios

- ✓ Identify future needs and sources of flexibility
- Develop new tools and methods for flexibility assessment

WP1 Optimal mix of flexibilities

WP2 Market designs and regulations

WP7 Scaling-up and replication

4 Demonstrators

✓ Foster the participation of new flexibility providers

 Demonstrate new flexibility services and multiservices capabilities

WP3 Grid forming by multi-services hybrid storage

WP4 Multi-services by different storage and FACTS devices

Multi-services by coordinated WP5 grid devices, large demandresponse and RES

WP6 Near real-time cross-border energy market

Le réseau de transport d'électricité

R&D NESTER

Define the best sources of \checkmark flexibility in the scenarios

OBJECTIVES

Quantify the needs of flexibility in different long-term scenarios

UNIVERSITÄT DUISBURG ESSEN

Create advanced tools and \checkmark methodologies to analyze flexibility

OSMOSE PROJECT

WP1: Status

OSMEDSE

WP2: status

- ✓ <u>Methodology for error forecast</u>
- ✓ Methodology to model the interface between TSOs and DSOs.
- <u>Analysis of KPIs</u> for possible electricity markets targeting optimized flexibilities
- ✓ First zonal market simulations produced, providing spot market prices.
- ✓ First analysis allowing to quantify difference in forecast errors at zonal and nodal scale.
- ✓ <u>Webinar</u> on the first findings from WP2 market simulations.

OSMOSE PROJECT Overview of demonstrations

WP3 Demo:

Grid forming by multi-service hybrid storage

- Test the robustness and effectiveness of grid forming control in two real environments
- ✓ Assess multi-services compatibility
- ✓ Define DC power and energy management strategies
- ✓ Test the portability of the control strategies over different hardware platforms

WP3 Demo: Status

OSMOSE WP3: Factory Acceptance Test of the

grid forming demonstrator

Markel Zubiaga,

Alain Sanchez-Ruiz

and Juan Jose Valera

Ingeteam

Real-time Control of Battery Energy Storage

Systems to Provide Ancillary Services Considering

Voltage-Dependent Capability of DC-AC Converters Zhao Yuan, Member, IEEE, Antonio Zecchino, Member, IEEE, Rachid Cherkaoui, Senior Member, IEEE,

Mario Paolone Senior Member, IEEE

Performance Assessment of Grid-forming vs

Grid-following Converter-interfaced BESS on

Frequency Regulation in Low-inertia Power Grids Yihui Zuo, Zhao Yuan, Fabrizio Sossan, Antonio Zecchino, Rachid Cherkaoui, Mario Paolone

Carmen Cardozo,

Guillaume Denis

and Thibault Prevost

RTE R&D

La Defense, Franc

Yannick Vernay RTE CNER

Lyon, France

Email: yannick.vernay@rte-france.com

WP4 Demo: Multiple services provided by coordinated control of storage and FACTS

- OBJECTIVES
- Define a Master Control to coordinate different flexibility solutions
- Design a new hybrid and modular storage solution offering multi-services
- ✓ Develop a lithium-ion battery connected at high voltage in DC (≥ 1 kV)

WP4 Demo: Status

- ✓ SAFT battery ready to be integrated in the Hybrid Flexible Device.
- ✓ Containerization and wiring of all power module components in the container close to completion (July 2021)
- ✓ On field installation works are planned for August-September 2021.

WP5 Demo: Multiple services provided by grid devices, large DR and RES coordinated in a smart management system

OBJECTIVES

- Demonstrate the provision of FRR and AVC by single or aggregated industrial loads
- Demonstrate the provision of Synthetic Inertia and AVC by wind farms
- ✓ Test innovative DTR
- Develop an Energy Management system to coordinate congestion management by DTR, RES and industrial loads

IBM

ENGINEERING

INGEGNERIA INFORMATIC/

errie spec

Terna

COMPENDIA

OSMOSE

WP5 Demo: status

- ✓ 5 Industrial load sites have been upgraded successfully : 88MW for congestion management, 5.5MVar for voltage control and 0.4MW for aFRR will be available for the demo.
- ✓ First local tests on Automatic Voltage Control on the two wind power plants were successfully conducted.
- A Synthetic Inertia control device has been developed by Enel Green Power and installed on its Pietragalla plant premise.
- D5.4 released. It explains all relevant activities and technical information related to the development and implementation of the software solutions needed to carry out the first use case of WP5 demonstrator.

WP6 Demo:

Near real-time cross-border energy market

OBJECTIVES

- Design a market which takes advantage of the flexibility near real-time
- ✓ Develop the software and platforms for bids creation, selection and activation
- ✓ Demonstrate the effectiveness and security of this market

S

SERVICE

WP6 Demo: Status

- ✓ <u>Video</u> on WP6 demonstrator concepts!
- ✓ EN4M software, FEB creation and OPT tools have been installed and tested individually on ELES business environment.
- ✓ Conclusive tests of the bidding generators were run from the flexibility provider's side.

WP7: Scaling up and replication

INTEROPERABILITY

Objectives:

- ✓ Refine IEC61850 interoperability framework
- ✓ Demonstrate the engineering process of IEC61850 ENTSOE profile with different specifications tools
- ✓ Demonstrate IEC61850 interoperability framework with products from different manufacturers

TSO-DSO FLEXIBILITIES COORDINATION

Objectives:

- Provide an optimization framework taking into account different time scales for voltage control on the DSO grid in coordination with the TSO
- ✓ Demonstrate the tool and its benefits in a demo in real-time simulation

BATTERY ENERGY STORAGE SYSTEM: DESIGN & CONTROL AND SHARED DATABASE

Objectives:

- Develop methods and tools for BESS design & control for a decrease of Levelised Cost
- Creation of a shared database with advanced data analytics for Energy Storage Systems in operation

WP7: Scaling up and replication

Thank you!

https://www.osmose-h2020.eu/

@Osmose_H2020

osmose-h2020

