

OPTIMAL SYSTEM-MIX OF FLEXIBILITY Solutions for European electricity

WP7 Scaling up and replication

T7.3 Methodology for optimal design of BESS

June 18th, 2020 | Webinar Benoît RICHARD | CEA

- 1. Introduction to the OSMOSE project
- 2. Presentation of the work on BESS optimal sizing methodology
- 3. Q&A session

Webinar process

- Use the chat box to write your questions
- The moderator will synthesise all questions and introduce them after the presentation
- The deliverable associated to the work presented today and the slides are available on OSMOSE website : <u>www.osmose-h2020.eu/deliverables</u>
- The webinar is recorded and will be published in OSMOSE website

Combining new needs and solutions

The consortium

- ✓ H2020 EU funded
- ✓ 28M€ budget
- ✓ 33 partners
- ✓ Leaders: RTE, REE,TERNA, ELES, CEA, TUB
- ✓ 2018 2021

Sub-Task 7.3.1 Battery Energy Storage Systems (BESS) optimal sizing methodology

- 1. General problem of BESS sizing
- 2. Optimal sizing method implemented
- 3. Illustrative BESS use cases
- 4. Sensitivity analysis
- 5. Conclusion

WP7

WP7

1. General problem of BESS sizing

- 2. Optimal sizing method implemented
- 3. Illustrative BESS use cases
- 4. Sensitivity analysis
- 5. Conclusion

General problem of BESS sizing

What are the most influencing factors to consider in a BESS sizing procedure ?

"Methodology report for application-specific design of BESS"

D7.5

Dissemination level : public

Implementation of an optimal sizing method

Deterministic method using numerical simulation

Sensitivity analysis

Identify the key drivers for BESS optimal size determination

EMS control Forecast errors Battery ageing BESS efficiency Sollicitation profiles

Quantify their impact on sizing results

Strong impact ?

WP7

- 1. General problem of BESS sizing
- 2. Optimal sizing method implemented
- 3. Illustrative BESS use cases
- 4. Sensitivity analysis
- 5. Conclusion

WP7 Optimal sizing method implemented

Synoptic of the simulation-based method implemented

WP7

- 1. General problem of BESS sizing
- 2. Optimal sizing method implemented
- 3. Illustrative BESS use cases
- 4. Sensitivity analysis
- 5. Conclusion

2 illustrative BESS application cases have been used for optimal sizing analysis

PV smoothing and peak shaving

(Call for tenders – French Energy Regulatory Commission)

BESS optimal size is obtained when benefits are maximum over the project lifetime Sizing Criteria = NPV (Net Present Value) ○SM⊕SE BESS optimal size is obtained when load can be fed at minimum cost of energy produced
Sizing Criteria = LCOE (Levelized Cost Of Energy)

Hybrid microgrid

WP7

- 1. General problem of BESS sizing
- 2. Optimal sizing method implemented
- 3. Illustrative BESS use cases
- 4. Sensitivity analysis
- 5. Conclusion

Factors investigated through sensitivity analysis
Precision of the BESS efficiency
Degradation of battery capacity due to ageing
Degree of technical modelling
Simulation time-step
Control strategy
Forecast quality

Ro

Factors investigated through sensitivity analysis

Precision of the BESS efficiency

Degradation of battery capacity due to ageing

Degree of technical modelling

Simulation time-step

Control strategy

Forecast quality

WP7 Influence of BESS efficiency precision

A variable efficiency behavior can be approximated by an average efficiency single value without any impact on optimal sizing

BESS precise efficiency behavior

How precisely must be set the average constant efficiency value?

The average efficiency value must be set precisely since the sizing indicator is strongly affected by this parameter An error on BESS efficiency value causes an error bordering on the same magnitude on the sizing indicator

Factors investigated through sensitivity analysis

Precision of the BESS efficiency

Degradation of battery capacity due to ageing

Degree of technical modelling

Simulation time-step

Control strategy

Forecast quality

Influence of ageing

WP7

De	egradation of battery	Baseline	BESS model parameters include ageing data / battery capacity degradation is continuously computed over time						
ca	pacity due to ageing	Comparative	Battery capacity remains constant o	ver time					
		LCOE = f(Battery Si	ze)		Baseline scenario	Comparative scenario			
LCOE	(€/MWh)	– 🔶 – Baseline (with aging	g) — — without capacity degradation		- Ageing taken into account	- Without capacity degradation			
500	High OPEX		High CAPEX	BESS size (kWh)	LCOE (€/MWh)	LCOE (€/MWh)	Relative error		
	Fuel costs significantly increase when BESS capacity			111	519	487	6,17%		
450			Low impact	222	421	388	7,84%		
430			and the second se	333	376	352	6,38%		
* , d		rades	•	444	360	344	4,44%		
400				555	369	361	2,17%		
	*			666	386	379	1,81%		
350				777	405	399	1,48%		
		Optimum		888	425	424	0,24%		
300				999	448	446	0,45%		
0	0 200	400 600	800 1000 1200	1110	472	470	0,42%		
		Battery Size (kWl	h)			Mean error	3,14%		

Strong impact when LCOE is mainly composed of OPEX generation costs

➡ BESS capacity degradation <u>must be taken into account</u> in optimal sizing

Comparison of different methods to estimate ageing

Aging estimation method	1-baseline SOH computation integrated into BESS model: capacity degradation calculated at each time-step	Simulation with const battery capacit	2 ant but moderately degraded ty over project lifetime	Yearly estimates of performances degradation use of macro ageing data in post-processing calculations		
Pros	Results are the most precise	Ease of implementation		Rough ageing estimates more easy to obtainFaster calculations		
Cons	 In-depth ageing parameter values difficult to collect Ageing modelling requires expert skills Computational extensive time for simulation 	 It may be difficult to find degraded capacity value 	the appropriate average constant	Possible loss of precision on sizing indicator results		
LCOE (€/MWh) 550	2 LCOE = f(Battery Size)	ont conscitu 100%	LCOE (€/MWh) 550	3 LCOE = f(Battery Size)		
500	Constant capacity 85% — Constant Consta	ant capacity 90%	500 Mean a	- • • • • • • • • • • • • • • • • •		
450	with constant capacity 85%	and a second	450	omputation time is divided by 20		
350	Put difficult to optim	mate the average	350			
300	Optimum degradation in r application and bat	regards to the ttery specificities	300 0 200	Optimum 1000 1200		
Ŭ	Battery Size (kWh)		Battery Size (kWh)			

Appropriate confidence levels can be obtained through approximation when detailed ageing lab-extracted data are not available

OSMADSEI

WP7

Factors investigated through sensitivity analysis

Precision of the BESS efficiency

Degradation of battery capacity due to ageing

Degree of technical modelling

Simulation time-step

Control strategy

Forecast quality

WP7 Influence of degree of technical modelling

Optimal sizing does not require a high degree of technical modelling

Using a simplified BESS model leads to similar results while saving significant computation time

	Factors investigated through sensitivity analysis
	Precision of the BESS efficiency
	Degradation of battery capacity due to ageing
	Degree of technical modelling
برا	Simulation time-step
	Control strategy
	Forecast quality

Influence of simulation time-step

The influence of the simulation time-step strongly depends on the <u>application time constants</u> related to the events impacting the operation costs or incomes. With PV fluctuation or fuel generator operation a time-step of 10mn is acceptable.

	Factors investigated through sensitivity analysis
	Precision of the BESS efficiency
	Degradation of battery capacity due to ageing
	Degree of technical modelling
	Simulation time-step
بر	Control strategy
	Forecast quality

WP7 Influence of control strategy

Degree of complexity of		Baselii	ne Ba	sic control algori	ithms				
(control algorithms	Compara	ative Ad	vanced control a	algorithms (inclu	ding optimizatio	on)		
LCOE = f(Battery Size) LCOE (€/MWh) 550							Baseline scenario - Basic control strategy	Comparative scenario - Advanced control with optimisation	
500			Advance	d control with opt	timization	BESS size (kWh)	LCOE (€/MWh)	LCOE (€/MWh)	LCOE variation
	Advanced	control moves	the optimum	n due to		111	528	407	-22,92%
450	\ substanti	al reduction of	fuel operatin	g costs		222	417	381	-8,63%
	N N			a star a		333	370	344	-7,03%
400	× ×					444	357	350	-1,96%
400	, ,	Optimum				555	371	368	-0,81%
						666	388	390	0,52%
350						777	408	413	1,23%
	New optin	num				888	432	436	0,93%
200						999	454	459	1,10%
300 0	200	400 6	00 80	0 1000	1200	1110	477	485	1,68%
		Battery S	ize (kWh)				Optimal LCOE variation	between the 2 scenarios	-3,64%

Strong impact: different control strategies may lead to a different optimal BESS size

It is therefore recommended to clearly define the control strategy before determining the optimal size

	Factors investigated through sensitivity analysis
	Precision of the BESS efficiency
	Degradation of battery capacity due to ageing
	Degree of technical modelling
	Simulation time-step
	Control strategy
۶۰	Forecast quality

WP7 Influence of forecast quality

Forecast quality when	Baseline	PV: standard day-1 forecast / Load: persistence day+7				
predictive control is facing	Comparative #1	PV: perfect forecast (actual PV production) / Load: perfect forecast (actual consumption)				
forecast errors	Comparative #2	PV / Load: enhanced forecast with 50% fewer errors				

Highly depends on the application purpose: if the main function of BESS is to compensate for forecasting errors in the RE sources, forecast quality is of the highest importance for optimal sizing

WP7

- 1. General problem of BESS sizing
- 2. Optimal sizing method implemented
- 3. Illustrative BESS use cases
- 4. Sensitivity analysis

5. Conclusion

Sensitivity study conclusions

Factor	Conclusion	
Precision of the BESS efficiency	Variable efficiency can be approximated by an average efficiency single value	
Degradation of battery capacity due to ageing	Ageing must be taken into account in optimal sizing Appropriate confidence levels can be obtained through approximation	•
Degree of technical modelling	Optimal sizing does not require a high degree of technical modelling	
Simulation time-step	Impact depends on the application time constants For PV or fuel generator operation, time-step of 10mn is suitable	•
Control strategy	Strong impact	
	Highly depends on the application purpose	
Forecast quality	Significant impact when the main function of the BESS is to compensate for forecasting errors	

These conclusions help to:

 concentrate the effort on the crucial factors

identify where
computation time can be
saved without degrading
the accuracy of the result

Factor	Implementation		LCOE = f(Battery Size)				Baseline scenario -	Approximation -			
Degree of technical	Simplified BESS	550	- ← - Baseline - E	C_model - 20y	simu - timestej	p 1mn		EC_model 20y simulation time step 1mn	E/P_model 1y simulation time step 10mn		
modelling	model	500 1	— ■ — E/P_model	- 1y simu - time	estep 10mn		BESS size (kWh)	LCOE (€/MWh)	LCOE (€/MWh)	Relative error	
		· • • • •			· · · · · · · · · · · · · · · · · · ·		111	519	478	7,90%	
Precision of the	average efficiency value	Acy 450 Mean absolute deviation on LCOE is under 2% Computation time is divided by 840	is under 2%	222	222	421	415	1,43%			
BESS efficiency			i computation	computation time is divided by 840		333	376	372	1,06%		
			444	360	357	0,83%					
		400					555	369	370	0,27%	
Degradation of	approximation	400		A			666	386	390	1,04%	
battery capacity							777	405	409	0,99%	
due to ageing		-	250				888	425	433	1,88%	
0 0		350	Ontimum				999	448	454	1,34%	
			optimum				1110	472	478	1,27%	
Simulation time-		time-	200							Mean error	1,80%
step	Time-step of 10 mn	0	200 400 600 800 1000		0 1200	Computation	hh:mm:ss	hh:mm:ss	time reduction factor		
			Batter	y Size (kWh)			time / config	01:10:00	00:00:05	840	

By putting into practice the study sensitivity study conclusions, calculation time can be divided by 840 with an average error below 2% compared to the baseline (most precise) scenario

WP7 Potential method improvements

The very deterministic simulation-based method used for optimal sizing:

- was well suited for the sensitivity analysis purposes
- has some weaknesses
 - o Requires to collect a large amount of data
 - o Doesn't take into account uncertainties
 - o Needs large number of simulations to reach the optimum

- could be combined with other techniques such as:
 - Probabilistic / stochastic methods,
 - Direct search algorithms:
 - Mathematical optimisation
 - Heuristic approaches

OPTIMAL SYSTEM-MIX OF FLEXIBILITY Solutions for European electricity

Thank you !